咨询与建议

限定检索结果

文献类型

  • 1,889 篇 期刊文献
  • 705 篇 会议
  • 9 册 图书

馆藏范围

  • 2,603 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,522 篇 工学
    • 901 篇 计算机科学与技术...
    • 767 篇 软件工程
    • 261 篇 生物工程
    • 259 篇 信息与通信工程
    • 253 篇 生物医学工程(可授...
    • 190 篇 电气工程
    • 178 篇 光学工程
    • 158 篇 控制科学与工程
    • 147 篇 核科学与技术
    • 136 篇 电子科学与技术(可...
    • 124 篇 化学工程与技术
    • 70 篇 机械工程
    • 61 篇 仪器科学与技术
    • 58 篇 动力工程及工程热...
    • 48 篇 交通运输工程
    • 48 篇 安全科学与工程
  • 1,405 篇 理学
    • 776 篇 物理学
    • 368 篇 数学
    • 337 篇 生物学
    • 180 篇 统计学(可授理学、...
    • 153 篇 化学
    • 69 篇 系统科学
    • 48 篇 地球物理学
  • 342 篇 管理学
    • 192 篇 管理科学与工程(可...
    • 144 篇 图书情报与档案管...
    • 84 篇 工商管理
  • 247 篇 医学
    • 210 篇 临床医学
    • 156 篇 基础医学(可授医学...
    • 99 篇 药学(可授医学、理...
    • 80 篇 公共卫生与预防医...
  • 62 篇 法学
  • 57 篇 农学
  • 29 篇 经济学
  • 26 篇 教育学
  • 6 篇 文学
  • 5 篇 艺术学
  • 2 篇 军事学

主题

  • 150 篇 hadron colliders
  • 84 篇 deep learning
  • 76 篇 hadrons
  • 58 篇 machine learning
  • 47 篇 hadronic decays
  • 42 篇 bottom mesons
  • 38 篇 branching fracti...
  • 38 篇 accuracy
  • 36 篇 particle decays
  • 34 篇 training
  • 32 篇 w & z bosons
  • 30 篇 feature extracti...
  • 29 篇 artificial intel...
  • 28 篇 higgs bosons
  • 28 篇 flavor changing ...
  • 27 篇 leptonic, semile...
  • 25 篇 computational mo...
  • 25 篇 predictive model...
  • 24 篇 charmed mesons
  • 22 篇 semantics

机构

  • 456 篇 department of ph...
  • 388 篇 iccub universita...
  • 387 篇 cavendish labora...
  • 377 篇 university of ch...
  • 373 篇 horia hulubei na...
  • 363 篇 h.h. wills physi...
  • 361 篇 van swinderen in...
  • 358 篇 school of physic...
  • 340 篇 department of ph...
  • 337 篇 imperial college...
  • 336 篇 center for high ...
  • 334 篇 yandex school of...
  • 331 篇 stfc rutherford ...
  • 330 篇 oliver lodge lab...
  • 329 篇 institute of par...
  • 322 篇 infn sezione di ...
  • 320 篇 physikalisches i...
  • 315 篇 henryk niewodnic...
  • 314 篇 nikhef national ...
  • 311 篇 infn sezione di ...

作者

  • 233 篇 beiter a.
  • 217 篇 barter w.
  • 212 篇 bellee v.
  • 196 篇 casse g.
  • 194 篇 bowcock t.j.v.
  • 189 篇 blake t.
  • 187 篇 borsato m.
  • 187 篇 betancourt c.
  • 187 篇 bediaga i.
  • 187 篇 amato s.
  • 185 篇 boettcher t.
  • 185 篇 braun s.
  • 184 篇 borisyak m.
  • 184 篇 bizzeti a.
  • 183 篇 baryshnikov f.
  • 181 篇 bencivenni g.
  • 175 篇 brundu d.
  • 173 篇 back j.j.
  • 173 篇 bay a.
  • 169 篇 bursche a.

语言

  • 2,399 篇 英文
  • 180 篇 其他
  • 23 篇 中文
  • 2 篇 德文
  • 1 篇 法文
检索条件"机构=Department of Computer Engineering & AI and Data Science Application and Research Center"
2603 条 记 录,以下是1081-1090 订阅
排序:
Improving Incremental Learning: A Closer Look at the Softmax Function
SSRN
收藏 引用
SSRN 2024年
作者: Zhai, Zheng Zhang, Jiali Wang, Haiyu Wu, Mingxin Yang, Keshun Qiao, Xiaoyan Sun, Qiang Beijing Normal University No.18 Jinfeng Road Guangdong Zhuhai519087 China Shandong Technology and Business University Shandong Yantai China Yantai Key Laboratory of Big Data Modeling and Intelligent Computing Shandong China Immersion Technology and Evaluation Shandong Engineering Research Center Shandong China School of Mathematics Sichuan University Chengdu China College of Liberal Arts and Sciences University of Illinois Urbana-Champaign IL United States Department of Statistical Sciences University of Toronto ON Canada Department of Computer Science University of Toronto ON Canada Department of Statistics and Data Science MBZUAI Abu Dhabi United Arab Emirates
This paper investigates the limitations of the widely adopted softmax cross-entropy loss in incremental learning problems. Specifically, we highlight how the shift-invariant property of this loss function can lead to ... 详细信息
来源: 评论
P-FedAvg: Parallelizing federated learning with theoretical guarantees  40
P-FedAvg: Parallelizing federated learning with theoretical ...
收藏 引用
40th IEEE Conference on computer Communications, INFOCOM 2021
作者: Zhong, Zhicong Zhou, Yipeng Wu, Di Chen, Xu Chen, Min Li, Chao Sheng, Quan Z. Sun Yat-Sen University School of Computer Science and Engineering Guangzhou510006 China Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou510006 China PCL Research Center of Networks and Communications Peng Cheng Laboratory Shenzhen518000 China Department of Computing Macquarie University SydneyNSW2109 Australia School of Computer Science and Technology Huazhong University of Science and Technology Wuhan430074 China Tencent Technology Co. Ltd Shenzhen China
With the growth of participating clients, the centralized parameter server (PS) will seriously limit the scale and efficiency of Federated Learning (FL). A straightforward approach to scale up the FL system is to cons... 详细信息
来源: 评论
Artificial intelligence for modelling infectious disease epidemics
收藏 引用
Nature 2025年 第8051期638卷 623-635页
作者: Kraemer, Moritz U. G. Tsui, Joseph L.-H. Chang, Serina Y. Lytras, Spyros Khurana, Mark P. Vanderslott, Samantha Bajaj, Sumali Scheidwasser, Neil Curran-Sebastian, Jacob Liam Semenova, Elizaveta Zhang, Mengyan Unwin, H. Juliette T. Watson, Oliver J. Mills, Cathal Dasgupta, Abhishek Ferretti, Luca Scarpino, Samuel V. Koua, Etien Morgan, Oliver Tegally, Houriiyah Paquet, Ulrich Moutsianas, Loukas Fraser, Christophe Ferguson, Neil M. Topol, Eric J. Duchêne, David A. Stadler, Tanja Kingori, Patricia Parker, Michael J. Dominici, Francesca Shadbolt, Nigel Suchard, Marc A. Ratmann, Oliver Flaxman, Seth Holmes, Edward C. Gomez-Rodriguez, Manuel Schölkopf, Bernhard Donnelly, Christl A. Pybus, Oliver G. Cauchemez, Simon Bhatt, Samir Pandemic Sciences Institute University of Oxford Oxford United Kingdom Department of Biology University of Oxford Oxford United Kingdom Department of Electrical Engineering and Computer Science University of California Berkeley Berkeley CA United States UCSF UC Berkeley Joint Program in Computational Precision Health Berkeley CA United States Division of Systems Virology Department of Microbiology and Immunology The Institute of Medical Science The University of Tokyo Tokyo Japan Section of Epidemiology Department of Public Health University of Copenhagen Copenhagen Denmark Oxford Vaccine Group University of Oxford and NIHR Oxford Biomedical Research Centre Oxford United Kingdom Department of Epidemiology and Biostatistics Imperial College London London United Kingdom Department of Computer Science University of Oxford Oxford United Kingdom School of Mathematics University of Bristol Bristol United Kingdom MRC Centre for Global Infectious Disease Analysis School of Public Health Imperial College London London United Kingdom Department of Statistics University of Oxford Oxford United Kingdom Doctoral Training Centre University of Oxford Oxford United Kingdom Institute for Experiential AI Northeastern University MA Boston Thailand Santa Fe Institute Santa Fe NM United States World Health Organization Regional Office for Africa Brazzaville Congo WHO Hub for Pandemic and Epidemic Intelligence Health Emergencies Programme World Health Organization Berlin Germany Centre for Epidemic Response and Innovation (CERI) School for Data Science and Computational Thinking Stellenbosch University Stellenbosch South Africa African Institute for Mathematical Sciences (AIMS) South Africa Muizenberg Cape Town South Africa Genomics England London United Kingdom Scripps Research La Jolla CA United States Department of Biosystems Science and Engineering ETH Zürich Basel Switzerland Swiss Institute of Bioinformatics Lausanne Switzerland The Ethox Centre Nuffield
Infectious disease threats to individual and public health are numerous, varied and frequently unexpected. Artificial intelligence (ai) and related technologies, which are already supporting human decision making in e...
来源: 评论
Navigating the Noise: Bringing Clarity to ML Parameterization Design with O(100) Ensembles
arXiv
收藏 引用
arXiv 2023年
作者: Lin, Jerry Yu, Sungduk Peng, Liran Beucler, Tom Wong-Toi, Eliot Hu, Zeyuan Gentine, Pierre Geleta, Margarita Pritchard, Mike Department of Earth System Sciences University of California at Irvine IrvineCA United States Multimodal Cognitive AI Intel Labs Santa ClaraCA95054 United States Faculty of Geosciences and Environment University of Lausanne Lausanne Switzerland Expertise Center for Climate Extremes University of Lausanne Lausanne Switzerland Department of Statistics University of California at Irvine IrvineCA United States Department of Earth and Planetary Sciences Harvard University United States NVIDIA Research United States LEAP Science and Technology Center School of Engineering and Applied Sciences Climate School Columbia University United States Department of Electrical Engineering and Computer Science University of California at Berkeley BerkeleyCA United States Department of Biomedical Data Science Stanford University School of Medicine Palo AltoCA United States
Machine-learning (ML) parameterizations of subgrid processes (here of turbulence, convection, and radiation) may one day replace conventional parameterizations by emulating high-resolution physics without the cost of ... 详细信息
来源: 评论
Discriminative features matter: Multi-layer bilinear pooling for camera localization  30
Discriminative features matter: Multi-layer bilinear pooling...
收藏 引用
30th British Machine Vision Conference, BMVC 2019
作者: Wang, Xin Wang, Xiang Wang, Chen Bai, Xiao Wu, Jing Hancock, Edwin Robert School of Computer Science and Engineering Beijing Advanced Innovation Center for Big Data and Brain Computing Jiangxi Research Institute Beihang University Beijing China School of Computer Science and Informatics Cardiff University Cardiff United Kingdom Department of Computer Science University of York York United Kingdom
Deep learning based camera localization from a single image has been explored recently since these methods are computationally efficient. However, existing methods only provide general global representations, from whi... 详细信息
来源: 评论
NTIRE 2023 Challenge on Light Field Image Super-Resolution: dataset, Methods and Results
NTIRE 2023 Challenge on Light Field Image Super-Resolution: ...
收藏 引用
2023 IEEE/CVF Conference on computer Vision and Pattern Recognition Workshops, CVPRW 2023
作者: Wang, Yingqian Wang, Longguang Liang, Zhengyu Yang, Jungang Timofte, Radu Guo, Yulan Jin, Kai Wei, Zeqiang Yang, Angulia Guo, Sha Gao, Mingzhi Zhou, Xiuzhuang Van Duong, Vinh Huu, Thuc Nguyen Yim, Jonghoon Jeon, Byeungwoo Liu, Yutong Cheng, Zhen Xiao, Zeyu Xu, Ruikang Xiong, Zhiwei Liu, Gaosheng Jin, Manchang Yue, Huanjing Yang, Jingyu Gao, Chen Zhang, Shuo Chang, Song Lin, Youfang Chao, Wentao Wang, Xuechun Wang, Guanghui Duan, Fuqing Xia, Wang Wang, Yan Xia, Peiqi Wang, Shunzhou Lu, Yao Cong, Ruixuan Sheng, Hao Yang, Da Chen, Rongshan Wang, Sizhe Cui, Zhenglong Chen, Yilei Lu, Yongjie Cai, Dongjun An, Ping Salem, Ahmed Ibrahem, Hatem Yagoub, Bilel Kang, Hyun-Soo Zeng, Zekai Wu, Heng National University of Defense Technology China Aviation University of Air Force China University of Würzburg Germany Eth Zürich Switzerland Sun Yat-sen University The Shenzhen Campus of Sun Yat-sen University China Bigo Technology Pte. Ltd. Singapore Smart Medical Innovation Lab Beijing University of Posts and Telecommunications China Global Explorer Ltd. Suzhou China National Engineering Research Center of Visual Technology School of Computer Science Peking University China School of Artificial Intelligence Beijing University of Posts and Telecommunications China Department of Electrical and Computer Engineering Sungkyunkwan University Korea Republic of University of Science and Technology of China China School of Electrical and Information Engineering Tianjin University China Beijing Key Lab of Traffic Data Analysis and Mining School of Computer and Information Technology Beijing Jiaotong University China Beijing Normal University China Toronto Metropolitan University Canada Beijing Institute of Technology China Shenzhen MSU-BIT University China State Key Laboratory of Virtual Reality Technology and Systems School of Computer Science and Engineering Beihang University China Beihang Hangzhou Innovation Institute Yuhang China Faculty of Applied Sciences Macao Polytechnic University China School of Communication and Information Engineering Shanghai University China School of Information and Communication Engineering Chungbuk National University Korea Republic of Guangdong University of Technology China
In this report, we summarize the first NTIRE challenge on light field (LF) image super-resolution (SR), which aims at super-resolving LF images under the standard bicubic degradation with a magnification factor of 4. ... 详细信息
来源: 评论
Simulating Atmospheric Processes in Earth System Models and Quantifying Uncertainties with Deep Learning Multi-Member and Stochastic Parameterizations
arXiv
收藏 引用
arXiv 2024年
作者: Behrens, Gunnar Beucler, Tom Iglesias-Suarez, Fernando Yu, Sungduk Gentine, Pierre Pritchard, Michael Schwabe, Mierk Eyring, Veronika Institut für Physik der Atmosphäre Oberpfaffenhofen Germany Bremen Germany Faculty of Geosciences and Environment University of Lausanne Switzerland Expertise Center for Climate Extremes University of Lausanne Switzerland Predictia Intelligent Data Solutions S.L. Santander Spain Department of Earth System Science University of California Irvine IrvineCA United States Multimodal Cognitive AI Research Intel Labs Santa ClaraCA United States Department of Earth and Environmental Engineering Columbia University New YorkNY10027 United States Earth Institute and Data Science Institute Columbia University New YorkNY10027 United States NVIDIA United States
Deep learning is a powerful tool to represent subgrid processes in climate models, but many application cases have so far used idealized settings and deterministic approaches. Here, we develop stochastic parameterizat... 详细信息
来源: 评论
Neural Architecture Search for Optimization of Spatial-Temporal Brain Network Decomposition  23rd
Neural Architecture Search for Optimization of Spatial-Tempo...
收藏 引用
23rd International Conference on Medical Image Computing and computer-Assisted Intervention, MICCai 2020
作者: Li, Qing Zhang, Wei Lv, Jinglei Wu, Xia Liu, Tianming School of Artificial Intelligence Beijing Normal University Beijing China Engineering Research Center of Intelligent Technology and Educational Application Ministry of Education Beijing China Department of Computer Science and Bioimaging Research Center The University of Georgia AthensGA United States Department of Biomedical Engineering University of Melbourne ParkvilleVIC Australia
Using neural networks to explore spatial patterns and temporal dynamics of human brain activities has been an important yet challenging problem because it is hard to manually design the most optimal neural networks. T... 详细信息
来源: 评论
data mining analysis of the influences of electrocardiogram P-wave morphology parameters on atrial fibrillation
Data mining analysis of the influences of electrocardiogram ...
收藏 引用
作者: Ouyang, Chen-Sen Chen, Yenming J. Tsai, Jinn-Tsong Chang, Yiu-Jen Huang, Tian-Hsiang Hwang, Kao-Shing Ho, Yuan-Chih Ho, Wen-Hsien Department of Information Engineering I-Shou University Kaohsiung Taiwan Department of Logistics Management National Kaohsiung University of Science and Technology Kaohsiung Taiwan Department of Computer Science National Pingtung University Pingtung Taiwan Department of Healthcare Administration and Medical Informatics Kaohsiung Medical University Kaohsiung Taiwan Center for Big Data Research Kaohsiung Medical University Kaohsiung Taiwan Department of Electrical Engineering National Sun Yat-Sen University Kaohsiung Taiwan Division of Cardiology Department of Internal Medicine Yuan's General Hospital Kaohsiung Taiwan Department of Medical Research Kaohsiung Medical University Hospital Kaohsiung Taiwan
Atrial fibrillation (AF) is a type of paroxysmal cardiac disease that presents no obvious symptoms during onset, and even the electrocardiograms (ECG) results of patients with AF appear normal under a premorbid status... 详细信息
来源: 评论
Tacchi 2.0: A Low Computational Cost and Comprehensive Dynamic Contact Simulator for Vision-based Tactile Sensors
arXiv
收藏 引用
arXiv 2025年
作者: Sun, Yuhao Zhang, Shixin Li, Wenzhuang Zhao, Jie Shan, Jianhua Shen, Zirong Chen, Zixi Sun, Fuchun Guo, Di Fang, Bin School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100083 China Beijing100083 China School of International Beijing University of Posts and Telecommunications Beijing100876 China School of Mechanical Engineering Anhui University of Technology China Zhili College Tsinghua University Beijing100084 China Biorobotics Institute The Department of Excellence in Robotics and AI Scuola Superiore Sant’Anna Pisa56127 Italy Institute for Artificial Intelligence Department of Computer Science and Technology Beijing National Research Center for Information Science and Technology Tsinghua University Beijing100084 China
With the development of robotics technology, some tactile sensors, such as vision-based sensors, have been applied to contact-rich robotics tasks. However, the durability of vision-based tactile sensors significantly ... 详细信息
来源: 评论