With the increase of crowd monitoring and management needs, dense crowd detection has become an important research direction in the field of computer vision, mainly using target detection methods to detect the positio...
详细信息
The integration of social networks with the Internet of Things (IoT) has been explored in recent research, giving rise to the Social Internet of Things (SIoT). One promising application of SIoT is viral marketing, whi...
详细信息
The use of privacy-enhanced facial recognition has increased in response to growing concerns about data securityand privacy in the digital age. This trend is spurred by rising demand for face recognition technology in...
详细信息
The use of privacy-enhanced facial recognition has increased in response to growing concerns about data securityand privacy in the digital age. This trend is spurred by rising demand for face recognition technology in a varietyof industries, including access control, law enforcement, surveillance, and internet communication. However,the growing usage of face recognition technology has created serious concerns about data monitoring and userprivacy preferences, especially in context-aware systems. In response to these problems, this study provides a novelframework that integrates sophisticated approaches such as Generative Adversarial Networks (GANs), Blockchain,and distributed computing to solve privacy concerns while maintaining exact face recognition. The framework’spainstaking design and execution strive to strike a compromise between precise face recognition and protectingpersonal data integrity in an increasingly interconnected environment. Using cutting-edge tools like Dlib for faceanalysis,Ray Cluster for distributed computing, and Blockchain for decentralized identity verification, the proposedsystem provides scalable and secure facial analysis while protecting user privacy. The study’s contributions includethe creation of a sustainable and scalable solution for privacy-aware face recognition, the implementation of flexibleprivacy computing approaches based on Blockchain networks, and the demonstration of higher performanceover previous methods. Specifically, the proposed StyleGAN model has an outstanding accuracy rate of 93.84%while processing high-resolution images from the CelebA-HQ dataset, beating other evaluated models such asProgressive GAN 90.27%, CycleGAN 89.80%, and MGAN 80.80%. With improvements in accuracy, speed, andprivacy protection, the framework has great promise for practical use in a variety of fields that need face recognitiontechnology. This study paves the way for future research in privacy-enhanced face recognition systems, emphasizingt
This research presents a machine-learning framework for predicting depression severity by leveraging Multiple-Choice Questions (MCQs) and transcribed audio data. Two distinct data sources are employed, with regression...
详细信息
The recent advancements in vision technology have had a significant impact on our ability to identify multiple objects and understand complex *** technologies,such as augmented reality-driven scene integration,robotic...
详细信息
The recent advancements in vision technology have had a significant impact on our ability to identify multiple objects and understand complex *** technologies,such as augmented reality-driven scene integration,robotic navigation,autonomous driving,and guided tour systems,heavily rely on this type of scene *** paper presents a novel segmentation approach based on the UNet network model,aimed at recognizing multiple objects within an *** methodology begins with the acquisition and preprocessing of the image,followed by segmentation using the fine-tuned UNet ***,we use an annotation tool to accurately label the segmented *** labeling,significant features are extracted from these segmented objects,encompassing KAZE(Accelerated Segmentation and Extraction)features,energy-based edge detection,frequency-based,and blob *** the classification stage,a convolution neural network(CNN)is *** comprehensive methodology demonstrates a robust framework for achieving accurate and efficient recognition of multiple objects in *** experimental results,which include complex object datasets like MSRC-v2 and PASCAL-VOC12,have been *** analyzing the experimental results,it was found that the PASCAL-VOC12 dataset achieved an accuracy rate of 95%,while the MSRC-v2 dataset achieved an accuracy of 89%.The evaluation performed on these diverse datasets highlights a notably impressive level of performance.
To address the challenges of finding an ideal balance between computational redundancy, accuracy, parameter count, and computational complexity in existing pedestrian fall detection algorithms, this paper proposes a l...
详细信息
Network Intrusion Detection Systems (NIDS) play a critical role in safeguarding computer networks against malicious activities and cyber threats. To improve the accuracy and robustness of NIDS, this research explores ...
详细信息
The DeepFish exploration aims to develop a web-based application that leverages deep learning algorithms to accurately identify and provide detailed information about various fish species based on user-uploaded images...
详细信息
Treatment outcomes and patient survival rates are greatly improved by early identification of ovarian cancer. However, to increase diagnostic accuracy, effective predictive modeling is required due to the biomarkers...
详细信息
The web application permits on-line admissions saving the time of geographically scattered college *** permits lowering time in activities, centralized information dealing with and paperless admission with decreased *...
详细信息
暂无评论