Detecting sophisticated cyberattacks,mainly Distributed Denial of Service(DDoS)attacks,with unexpected patterns remains challenging in modern *** detection systems often struggle to mitigate such attacks in convention...
详细信息
Detecting sophisticated cyberattacks,mainly Distributed Denial of Service(DDoS)attacks,with unexpected patterns remains challenging in modern *** detection systems often struggle to mitigate such attacks in conventional and software-defined networking(SDN)*** Machine Learning(ML)models can distinguish between benign and malicious traffic,their limited feature scope hinders the detection of new zero-day or low-rate DDoS attacks requiring frequent *** this paper,we propose a novel DDoS detection framework that combines Machine Learning(ML)and Ensemble Learning(EL)techniques to improve DDoS attack detection and mitigation in SDN *** model leverages the“DDoS SDN”dataset for training and evaluation and employs a dynamic feature selection mechanism that enhances detection accuracy by focusing on the most relevant *** adaptive approach addresses the limitations of conventional ML models and provides more accurate detection of various DDoS attack *** proposed ensemble model introduces an additional layer of detection,increasing reliability through the innovative application of ensemble *** proposed solution significantly enhances the model’s ability to identify and respond to dynamic threats in *** provides a strong foundation for proactive DDoS detection and mitigation,enhancing network defenses against evolving *** comprehensive runtime analysis of Simultaneous Multi-Threading(SMT)on identical configurations shows superior accuracy and efficiency,with significantly reduced computational time,making it ideal for real-time DDoS detection in dynamic,rapidly changing *** results demonstrate that our model achieves outstanding performance,outperforming traditional algorithms with 99%accuracy using Random Forest(RF)and K-Nearest Neighbors(KNN)and 98%accuracy using XGBoost.
This paper proposes a finite-time stable chattering-free output feedback control method for rigid satellites equipped with single gimbal control moment gyro (SGCMG) actuators, considering dynamic uncertainties and ext...
详细信息
To properly answer a question, you must first understand the question. Users typically send more explanations than they need to answer in order to express their question in natural language, which increases the comple...
详细信息
Distributed Denial of Service (DDoS) attacks pose a significant threat to network infrastructures, leading to service disruptions and potential financial losses. In this study, we propose an ensemble-based approach fo...
详细信息
Diabetes has become one of the significant reasons for public sickness and death in worldwide. By 2019, diabetes had affected more than 463 million people worldwide. According to the International Diabetes Federation ...
详细信息
Heads-up computing aims to provide synergistic digital assistance that minimally interferes with users' on-the-go daily activities. Currently, the input modalities of heads-up computing are mainly voice and finger...
详细信息
The permanent magnet (PM) Vernier machines enhance torque density and decrease cogging torque compared to conventional permanent magnet synchronous motor. This paper presents a novel fractional-slot H-shaped PM Vernie...
详细信息
In recent years, IoT has transformed personal environments by integrating diverse smart devices. This paper presents an advanced IoT architecture that optimizes network infrastructure, focusing on the adoption of MQTT...
详细信息
Drug-target interactions(DTIs) prediction plays an important role in the process of drug *** computational methods treat it as a binary prediction problem, determining whether there are connections between drugs and t...
详细信息
Drug-target interactions(DTIs) prediction plays an important role in the process of drug *** computational methods treat it as a binary prediction problem, determining whether there are connections between drugs and targets while ignoring relational types information. Considering the positive or negative effects of DTIs will facilitate the study on comprehensive mechanisms of multiple drugs on a common target, in this work, we model DTIs on signed heterogeneous networks, through categorizing interaction patterns of DTIs and additionally extracting interactions within drug pairs and target protein pairs. We propose signed heterogeneous graph neural networks(SHGNNs), further put forward an end-to-end framework for signed DTIs prediction, called SHGNN-DTI,which not only adapts to signed bipartite networks, but also could naturally incorporate auxiliary information from drug-drug interactions(DDIs) and protein-protein interactions(PPIs). For the framework, we solve the message passing and aggregation problem on signed DTI networks, and consider different training modes on the whole networks consisting of DTIs, DDIs and PPIs. Experiments are conducted on two datasets extracted from Drug Bank and related databases, under different settings of initial inputs, embedding dimensions and training modes. The prediction results show excellent performance in terms of metric indicators, and the feasibility is further verified by the case study with two drugs on breast cancer.
Nowadays, machine learning (ML) has attained a high level of achievement in many contexts. Considering the significance of ML in medical and bioinformatics owing to its accuracy, many investigators discussed multiple ...
详细信息
暂无评论