Vehicular Adhoc Networks(VANETs)enable vehicles to act as mobile nodes that can fetch,share,and disseminate information about vehicle safety,emergency events,warning messages,and passenger ***,the continuous dissemina...
详细信息
Vehicular Adhoc Networks(VANETs)enable vehicles to act as mobile nodes that can fetch,share,and disseminate information about vehicle safety,emergency events,warning messages,and passenger ***,the continuous dissemination of information fromvehicles and their one-hop neighbor nodes,Road Side Units(RSUs),and VANET infrastructures can lead to performance degradation of VANETs in the existing hostcentric IP-based ***,Information Centric Networks(ICN)are being explored as an alternative architecture for vehicular communication to achieve robust content distribution in highly mobile,dynamic,and errorprone *** ICN-based Vehicular-IoT networks,consumer mobility is implicitly supported,but producer mobility may result in redundant data transmission and caching inefficiency at intermediate vehicular *** paper proposes an efficient redundant transmission control algorithm based on network coding to reduce data redundancy and accelerate the efficiency of information *** proposed protocol,called Network Cording Multiple Solutions Scheduling(NCMSS),is receiver-driven collaborative scheduling between requesters and information sources that uses a global parameter expectation deadline to effectively manage the transmission of encoded data packets and control the selection of information *** results for the proposed NCMSS protocol is demonstrated to analyze the performance of ICN-vehicular-IoT networks in terms of caching,data retrieval delay,and end-to-end application *** end-to-end throughput in proposed NCMSS is 22%higher(for 1024 byte data)than existing solutions whereas delay in NCMSS is reduced by 5%in comparison with existing solutions.
Cloud providers frequently utilize two tightly coupled resource management strategies like task scheduling & data replication to boost the performance of the system generally, guaranteeing service level agreement ...
详细信息
Nowadays,commercial transactions and customer reviews are part of human life and various business *** technologies create a great impact on online user reviews and activities,affecting the business *** reviews and rat...
详细信息
Nowadays,commercial transactions and customer reviews are part of human life and various business *** technologies create a great impact on online user reviews and activities,affecting the business *** reviews and ratings are more helpful to the new customer to purchase the product,but the fake reviews completely affect the *** traditional systems consume maximum time and create complexity while analyzing a large volume of customer ***,in this work optimized recommendation system is developed for analyzing customer reviews with minimum ***,Amazon Product Kaggle dataset information is utilized for investigating the customer *** collected information is analyzed and processed by batch normalized capsule networks(NCN).The network explores the user reviews according to product details,time,price purchasing factors,etc.,ensuring product quality and *** effective recommendation system is developed using a butterfly optimized matrix factorizationfiltering *** the system’s efficiency is evaluated using the Rand Index,Dunn index,accuracy,and error rate.
Eye gestures are widely used in many applications, including device control, biometrics, visual analytics, and health-care, like Alzheimer's, accessibility, etc. The conventional method for eye gesture detection n...
详细信息
Underwater image enhancement and object detection has great potential for studying underwater environments. It has been utilized in various domains, including image-based underwater monitoring and Autonomous Underwate...
详细信息
Underwater image enhancement and object detection has great potential for studying underwater environments. It has been utilized in various domains, including image-based underwater monitoring and Autonomous Underwater Vehicle (AUV)-driven applications such as underwater terrain surveying. It has been observed that underwater images are not clear due to several factors such as low light, the presence of small particles, different levels of refraction of light, etc. Extracting high-quality features from these images to detect objects is a significant challenging task. To mitigate this challenge, MIRNet and the modified version of YOLOv3 namely Underwater-YOLOv3 (U-YOLOv3) is proposed. The MIRNet is a deep learning-based technology for enhancing underwater images. while using YOLOv3 for underwater object detection it lacks in detection of very small objects and huge-size objects. To address this problem proper anchor box size, quality feature aggregation technique, and during object classification image resizing is required. The proposed U-YOLOv3 has three unique features that help to work with the above specified issue like accurate anchor box determination using the K-means++ clustering algorithm, introduced Spatial Pyramid Pooling (SPP) layer during feature extraction which helps in feature aggregation, and added downsampling and upsampling to improve the detection rate of very large and very small size objects. The size of the anchor box is crucial in detecting objects of different sizes, SPP helps in aggregation of features, while down and upsampling changes sizes of objects during object detection. Precision, recall, F1-score and mAP are used as assessment metrics to assess proposed work. The proposed work compared with SSD, Tiny-YOLO, YOLOv2, YOLOv3, YOLOv4, YOLOv5, KPE-YOLOv5, YOLOv7, YOLOv8 and YOLOv9 single stage object detectors. The experiment on the Brackish and Trash ICRA19 datasets shows that our proposed method enhances the mean average precision for b
This study investigates barely-supervised medical image segmentation where only few labeled data, i.e., single-digit cases are available. We observe the key limitation of the existing state-of-the-art semi-supervised ...
详细信息
Voice is the king of communication in wireless cellular network (WCN). Again, WCNs provide two types of calls, i.e., new call (NC) and handoff call (HC). Generally, HCs have higher priority than NCs because call dropp...
详细信息
In this paper,Modified Multi-scale Segmentation Network(MMU-SNet)method is proposed for Tamil text *** texts from digi-tal writing pad notes are used for text *** words recognition for texts written from digital writi...
详细信息
In this paper,Modified Multi-scale Segmentation Network(MMU-SNet)method is proposed for Tamil text *** texts from digi-tal writing pad notes are used for text *** words recognition for texts written from digital writing pad through text file conversion are challen-ging due to stylus pressure,writing on glass frictionless surfaces,and being less skilled in short writing,alphabet size,style,carved symbols,and orientation angle *** pressure on the pad changes the words in the Tamil language alphabet because the Tamil alphabets have a smaller number of lines,angles,curves,and *** small change in dots,curves,and bends in the Tamil alphabet leads to error in recognition and changes the meaning of the words because of wrong alphabet ***,handwritten English word recognition and conversion of text files from a digital writing pad are performed through various algorithms such as Support Vector Machine(SVM),Kohonen Neural Network(KNN),and Convolutional Neural Network(CNN)for offline and online alphabet *** proposed algorithms are compared with above algorithms for Tamil word *** proposed MMU-SNet method has achieved good accuracy in predicting text,about 96.8%compared to other traditional CNN algorithms.
Process monitoring plays a pivotal role in elucidating the intricate interplay among process, structure, and property in additive manufacturing production. The control of powder spreading affects not only particle adh...
详细信息
Automatic timetable generation is a complex optimization problem with practical applications in various domains such as education, healthcare, and event management. The challenge lies in efficiently scheduling activit...
详细信息
ISBN:
(纸本)9798350318609
Automatic timetable generation is a complex optimization problem with practical applications in various domains such as education, healthcare, and event management. The challenge lies in efficiently scheduling activities while satisfying numerous constraints and objectives. In this study, we propose an OptiSchedule algorithm for automatic timetable generation. The algorithm employs a combination of heuristic search techniques and metaheuristic optimization methods to iteratively improve timetable solutions. It starts with initializing a timetable grid and iteratively refines the solution by generating neighbouring solutions and selecting the most promising ones based on an evaluation function. Through extensive testing and validation, our OptiSchedule algorithm demonstrates significant improvements in timetable quality and efficiency compared to existing approaches. The algorithm effectively minimizes conflicts, optimizes resource utilization, and balances workload distribution. Furthermore, it provides flexibility for users to input constraints and preferences, allowing customization to specific scheduling requirements. The OptiSchedule algorithm represents a significant advancement in the field of automatic timetable generation. Its ability to produce high-quality schedules while considering complex constraints makes it a valuable tool for educational institutions, healthcare facilities, and businesses alike. By streamlining scheduling processes and optimizing resource allocation, OptiSchedule contributes to improved operational efficiency and overall organizational performance. Through rigorous experimentation and evaluation, our study demonstrates the effectiveness of the OptiSchedule algorithm in improving timetable quality and reducing scheduling overhead. Compared to traditional methods, OptiSchedule generates timetables with fewer conflicts and better resource utilization, leading to enhanced productivity and satisfaction among stakeholders. Moreover, its fl
暂无评论