咨询与建议

限定检索结果

文献类型

  • 4,011 篇 会议
  • 2,590 篇 期刊文献
  • 47 册 图书

馆藏范围

  • 6,648 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 4,192 篇 工学
    • 2,766 篇 计算机科学与技术...
    • 2,216 篇 软件工程
    • 809 篇 信息与通信工程
    • 631 篇 控制科学与工程
    • 540 篇 电气工程
    • 458 篇 电子科学与技术(可...
    • 344 篇 生物工程
    • 337 篇 机械工程
    • 298 篇 光学工程
    • 283 篇 生物医学工程(可授...
    • 218 篇 动力工程及工程热...
    • 212 篇 仪器科学与技术
    • 163 篇 化学工程与技术
    • 138 篇 材料科学与工程(可...
    • 134 篇 交通运输工程
    • 124 篇 土木工程
    • 108 篇 建筑学
  • 2,052 篇 理学
    • 1,136 篇 数学
    • 512 篇 物理学
    • 420 篇 生物学
    • 300 篇 统计学(可授理学、...
    • 274 篇 系统科学
    • 180 篇 化学
  • 1,092 篇 管理学
    • 683 篇 管理科学与工程(可...
    • 443 篇 图书情报与档案管...
    • 292 篇 工商管理
  • 257 篇 医学
    • 219 篇 临床医学
    • 173 篇 基础医学(可授医学...
    • 113 篇 药学(可授医学、理...
  • 137 篇 法学
    • 100 篇 社会学
  • 98 篇 经济学
  • 54 篇 农学
  • 44 篇 教育学
  • 21 篇 文学
  • 20 篇 军事学
  • 14 篇 艺术学

主题

  • 303 篇 laboratories
  • 301 篇 computer science
  • 234 篇 software enginee...
  • 140 篇 application soft...
  • 133 篇 data mining
  • 114 篇 computational mo...
  • 106 篇 feature extracti...
  • 96 篇 costs
  • 94 篇 quality of servi...
  • 93 篇 semantics
  • 86 篇 computer archite...
  • 84 篇 wireless sensor ...
  • 83 篇 algorithm design...
  • 81 篇 deep learning
  • 80 篇 software
  • 78 篇 software systems
  • 78 篇 optimization
  • 78 篇 software testing
  • 78 篇 protocols
  • 78 篇 testing

机构

  • 231 篇 state key labora...
  • 159 篇 college of compu...
  • 118 篇 department of co...
  • 98 篇 national enginee...
  • 67 篇 department of co...
  • 67 篇 school of softwa...
  • 65 篇 state key labora...
  • 64 篇 department of co...
  • 54 篇 department of co...
  • 53 篇 state key labora...
  • 47 篇 national key lab...
  • 46 篇 peng cheng labor...
  • 46 篇 shanghai key lab...
  • 44 篇 university of ch...
  • 43 篇 key laboratory o...
  • 40 篇 tsinghua nationa...
  • 34 篇 school of comput...
  • 31 篇 department of el...
  • 30 篇 department of co...
  • 30 篇 beijing key labo...

作者

  • 52 篇 rajkumar buyya
  • 46 篇 shen linlin
  • 41 篇 junping du
  • 33 篇 mei-ling shyu
  • 33 篇 yu huiqun
  • 32 篇 shu-ching chen
  • 30 篇 fan guisheng
  • 29 篇 shen furao
  • 28 篇 zhao jian
  • 25 篇 chen shu-ching
  • 25 篇 baowen xu
  • 24 篇 zhou mengchu
  • 23 篇 yang yang
  • 22 篇 hamid soltanian-...
  • 22 篇 zongli lin
  • 22 篇 buyya rajkumar
  • 21 篇 mengchu zhou
  • 21 篇 sylvain martel
  • 21 篇 xu baowen
  • 20 篇 ji zhen

语言

  • 6,225 篇 英文
  • 296 篇 其他
  • 124 篇 中文
  • 2 篇 德文
  • 2 篇 日文
检索条件"机构=Department of Computer Engineering System Software Laboratory"
6648 条 记 录,以下是211-220 订阅
排序:
HairDiffusion: vivid multi-colored hair editing via latent diffusion  24
HairDiffusion: vivid multi-colored hair editing via latent d...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing systems
作者: Yu Zeng Yang Zhang Jiachen Liu Linlin Shen Kaijun Deng Weizhao He Jinbao Wang Computer Vision Institute School of Computer Science & Software Engineering Shenzhen University Computer Vision Institute School of Computer Science & Software Engineering Shenzhen University and Shenzhen Institute of Artificial Intelligence and Robotics for Society and National Engineering Laboratory for Big Data System Computing Technology Shenzhen University National Engineering Laboratory for Big Data System Computing Technology Shenzhen University and Guangdong Provincial Key Laboratory of Intelligent Information Processing
Hair editing is a critical image synthesis task that aims to edit hair color and hairstyle using text descriptions or reference images, while preserving irrelevant attributes (e.g., identity, background, cloth). Many ...
来源: 评论
A Memetic Algorithm Based Feature Weighting for Metabolomics Data Classification
收藏 引用
Chinese Journal of Electronics 2025年 第4期23卷 706-711页
作者: Jiarui Zhou Zexuan Zhu Zhen Ji College of Biomedical Engineering and Instrument Science Zhejiang University Hangzhou China Shenzhen City Key Laboratory of Embedded System Design College of Computer Science and Software Engineering Shenzhen University Shenzhen China
A metaheuristic chain based memetic algorithm namely MCMA is proposed for the classification of metabolomics data. MCMA regards both global evolution and local search as equivalent elemental metaheuristics, and search... 详细信息
来源: 评论
Ev-IDID: Enhancing Solutions to Interactive Dynamic Influence Diagrams through Evolutionary Algorithms  21
Ev-IDID: Enhancing Solutions to Interactive Dynamic Influenc...
收藏 引用
21st International Conference on Autonomous Agents and Multiagent systems, AAMAS 2022
作者: Ma, Biyang Pan, Yinghui Zeng, Yifeng Ming, Zhong School of Computer Science and Engineering Minnan Normal University China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China Department of Computer and Information Sciences Northumbria University United Kingdom College of Computer Science and Software Engineering Shenzhen University China
Interactive dynamic influence diagrams (I-DIDs) are a general framework for multiagent sequential decision making under uncertainty. Due to the model complexity, a significant amount of research has been invested into... 详细信息
来源: 评论
ENHANCING ROBUST FAIRNESS VIA CONFUSIONAL SPECTRAL REGULARIZATION
arXiv
收藏 引用
arXiv 2025年
作者: Jin, Gaojie Wu, Sihao Liu, Jiaxu Huang, Tianjin Mu, Ronghui The Key Laboratory of System Software Chinese Academy of Sciences State Key Laboratory of Computer Science Institute of Software Beijing China Department of Computer Science University of Exeter Exeter United Kingdom Department of Computer Science University of Liverpool Liverpool United Kingdom
Recent research has highlighted a critical issue known as "robust fairness", where robust accuracy varies significantly across different classes, undermining the reliability of deep neural networks (DNNs). A... 详细信息
来源: 评论
Adversarial Learning Under Hybrid Perturbations for Robust Acute Lymphoblastic Leukemia Classification  39
Adversarial Learning Under Hybrid Perturbations for Robust A...
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Chen, Jie Liu, Xinyuan Liu, Xintong Li, Jianqiang College of Computer Science and Software Engineering Shenzhen University China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China
Acute lymphoblastic leukemia is a childhood cancer prevalent worldwide, which can prove fatal within weeks or months. However, current diagnosis models based on machine learning and deep learning methods fail to consi... 详细信息
来源: 评论
An Encoder-Decoder Model Based On Spiking Neural Networks For Address Event Representation Object Recognition
收藏 引用
IEEE Transactions on Cognitive and Developmental systems 2025年
作者: Du, Sichun Zhu, Haodi Zhang, Yang Hong, Qinghui Hunan University College of Computer Science and Electronic Engineering Changsha418002 China Shenzhen University Computer Vision Institute School of Computer Science and Software Engineering National Engineering Laboratory for Big Data System Computing Technology Guangdong Key Laboratory of Intelligent Information Processing Shenzhen518060 China
Address event representation (AER) object recognition task has attracted extensive attention in neuromorphic vision processing. The spike-based and event-driven computation inherent in the spiking neural network (SNN)... 详细信息
来源: 评论
Planning with Linear Temporal Logic Specifications: Handling Quantifiable and Unquantifiable Uncertainty
arXiv
收藏 引用
arXiv 2025年
作者: Yu, Pian Li, Yong Parker, David Kwiatkowska, Marta United Kingdom Department of Computer Science University of Oxford United Kingdom Key Laboratory of System Software Chinese Academy of Sciences State Key Laboratory of Computer Science Institute of Software Chinese Academy of Sciences China
This work studies the planning problem for robotic systems under both quantifiable and unquantifiable uncertainty. The objective is to enable the robotic systems to optimally fulfill high-level tasks specified by Line... 详细信息
来源: 评论
Two-Stage Robust Optimization Under Decision Dependent Uncertainty
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2022年 第7期9卷 1295-1306页
作者: Yunfan Zhang Feng Liu Yifan Su Yue Chen Zhaojian Wang João P.S.Catalão State Key Laboratory of Power System and Generation Equipment the Department of Electrical EngineeringTsinghua UniversityBeijing 100084China Department of Mechanical and Automation Engineering the Chinese University of Hong KongHong Kong SARChina Ministry of Education Key Laboratory of System Control and Information Processing the Department of AutomationShanghai Jiao Tong Universityand also with Shanghai Engineering Research Center of Intelligent Control and ManagementShanghai 200240China Faculty of Engineering of the University of Porto and Institute for Systems and Computer Engineering Technology and Science(INESC TEC)Porto 4200-465Portugal IEEE
In the conventional robust optimization(RO)context,the uncertainty is regarded as residing in a predetermined and fixed uncertainty *** many applications,however,uncertainties are affected by decisions,making the curr... 详细信息
来源: 评论
Unlearnable 3D Point Clouds: Class-wise Transformation Is All You Need  38
Unlearnable 3D Point Clouds: Class-wise Transformation Is Al...
收藏 引用
38th Conference on Neural Information Processing systems, NeurIPS 2024
作者: Wang, Xianlong Li, Minghui Liu, Wei Zhang, Hangtao Hu, Shengshan Zhang, Yechao Zhou, Ziqi Jin, Hai National Engineering Research Center for Big Data Technology and System China Services Computing Technology and System Lab China Cluster and Grid Computing Lab China Hubei Engineering Research Center on Big Data Security China Hubei Key Laboratory of Distributed System Security China School of Cyber Science and Engineering Huazhong University of Science and Technology China School of Software Engineering Huazhong University of Science and Technology China School of Computer Science and Technology Huazhong University of Science and Technology China
Traditional unlearnable strategies have been proposed to prevent unauthorized users from training on the 2D image data. With more 3D point cloud data containing sensitivity information, unauthorized usage of this new ...
来源: 评论
A Cooperative Co-Evolution Algorithm with Variable-Importance Grouping for Large-Scale Optimization  13
A Cooperative Co-Evolution Algorithm with Variable-Importanc...
收藏 引用
13th IEEE Congress on Evolutionary Computation, CEC 2024
作者: Li, Yongfeng Zhang, Yuze Ma, Lijia Ji, Junkai Liu, Dugang Leung, Victor C. M. Li, Jianqiang Shenzhen University National Engineering Laboratory for Big Data System Computing Technology Shenzhen518060 China Guangdong Laboratory of Artificial Intelligence and Digital Economy Shenzhen518123 China College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China Artificial Intelligence Research Institute Shenzhen MSU-BIT University Shenzhen518172 China The University of British Columbia Department of Electrical and Computer Engineering VancouverV6T 1Z4 Canada
Cooperative co-evolution (CC) is a promising direction in solving large-scale multiobjective optimization problems (LMOPs). However, most existing methods of grouping decision variables face some difficulties when sea... 详细信息
来源: 评论