咨询与建议

限定检索结果

文献类型

  • 4,011 篇 会议
  • 2,590 篇 期刊文献
  • 47 册 图书

馆藏范围

  • 6,648 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 4,192 篇 工学
    • 2,766 篇 计算机科学与技术...
    • 2,216 篇 软件工程
    • 809 篇 信息与通信工程
    • 631 篇 控制科学与工程
    • 540 篇 电气工程
    • 458 篇 电子科学与技术(可...
    • 344 篇 生物工程
    • 337 篇 机械工程
    • 298 篇 光学工程
    • 283 篇 生物医学工程(可授...
    • 218 篇 动力工程及工程热...
    • 212 篇 仪器科学与技术
    • 163 篇 化学工程与技术
    • 138 篇 材料科学与工程(可...
    • 134 篇 交通运输工程
    • 124 篇 土木工程
    • 108 篇 建筑学
  • 2,052 篇 理学
    • 1,136 篇 数学
    • 512 篇 物理学
    • 420 篇 生物学
    • 300 篇 统计学(可授理学、...
    • 274 篇 系统科学
    • 180 篇 化学
  • 1,092 篇 管理学
    • 683 篇 管理科学与工程(可...
    • 443 篇 图书情报与档案管...
    • 292 篇 工商管理
  • 257 篇 医学
    • 219 篇 临床医学
    • 173 篇 基础医学(可授医学...
    • 113 篇 药学(可授医学、理...
  • 137 篇 法学
    • 100 篇 社会学
  • 98 篇 经济学
  • 54 篇 农学
  • 44 篇 教育学
  • 21 篇 文学
  • 20 篇 军事学
  • 14 篇 艺术学

主题

  • 303 篇 laboratories
  • 301 篇 computer science
  • 234 篇 software enginee...
  • 140 篇 application soft...
  • 133 篇 data mining
  • 114 篇 computational mo...
  • 106 篇 feature extracti...
  • 96 篇 costs
  • 94 篇 quality of servi...
  • 93 篇 semantics
  • 86 篇 computer archite...
  • 84 篇 wireless sensor ...
  • 83 篇 algorithm design...
  • 81 篇 deep learning
  • 80 篇 software
  • 78 篇 software systems
  • 78 篇 optimization
  • 78 篇 software testing
  • 78 篇 protocols
  • 78 篇 testing

机构

  • 231 篇 state key labora...
  • 159 篇 college of compu...
  • 118 篇 department of co...
  • 98 篇 national enginee...
  • 67 篇 department of co...
  • 67 篇 school of softwa...
  • 65 篇 state key labora...
  • 64 篇 department of co...
  • 54 篇 department of co...
  • 53 篇 state key labora...
  • 47 篇 national key lab...
  • 46 篇 peng cheng labor...
  • 46 篇 shanghai key lab...
  • 44 篇 university of ch...
  • 43 篇 key laboratory o...
  • 40 篇 tsinghua nationa...
  • 34 篇 school of comput...
  • 31 篇 department of el...
  • 30 篇 department of co...
  • 30 篇 beijing key labo...

作者

  • 52 篇 rajkumar buyya
  • 46 篇 shen linlin
  • 41 篇 junping du
  • 33 篇 mei-ling shyu
  • 33 篇 yu huiqun
  • 32 篇 shu-ching chen
  • 30 篇 fan guisheng
  • 29 篇 shen furao
  • 28 篇 zhao jian
  • 25 篇 chen shu-ching
  • 25 篇 baowen xu
  • 24 篇 zhou mengchu
  • 23 篇 yang yang
  • 22 篇 hamid soltanian-...
  • 22 篇 zongli lin
  • 22 篇 buyya rajkumar
  • 21 篇 mengchu zhou
  • 21 篇 sylvain martel
  • 21 篇 xu baowen
  • 20 篇 ji zhen

语言

  • 6,225 篇 英文
  • 296 篇 其他
  • 124 篇 中文
  • 2 篇 德文
  • 2 篇 日文
检索条件"机构=Department of Computer Engineering System Software Laboratory"
6648 条 记 录,以下是311-320 订阅
排序:
Object Detection using Statistical and textual Model  21
Object Detection using Statistical and textual Model
收藏 引用
7th International Conference on engineering and MIS, ICEMIS 2021
作者: Altabouni, Fathia Farj Huwedi, Ashraf Saad Bozed, Kenz Amhmed Department of Software Engineering Benghazi University Libya Department of Computer System Design Benghazi University Libya
Optical system for humans has the ability to get to know a very large number of objects or classes of object from two-dimensional visual information or three dimensions. Solving this task of detection or recognition b... 详细信息
来源: 评论
Learning with Open-world Noisy Data via Class-independent Margin in Dual Representation Space  39
Learning with Open-world Noisy Data via Class-independent Ma...
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Pan, Linchao Gao, Can Zhou, Jie Wang, Jinbao College of Computer Science and Software Engineering Shenzhen University China Guangdong Provincial Key Laboratory of Intelligent Information Processing China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China
Learning with Noisy Labels (LNL) aims to improve the model generalization when facing data with noisy labels, and existing methods generally assume that noisy labels come from known classes, called closed-set noise. H... 详细信息
来源: 评论
Learning with Open-world Noisy Data via Class-independent Margin in Dual Representation Space
arXiv
收藏 引用
arXiv 2025年
作者: Pan, Linchao Gao, Can Zhou, Jie Wang, Jinbao College of Computer Science and Software Engineering Shenzhen University China Guangdong Provincial Key Laboratory of Intelligent Information Processing China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China
Learning with Noisy Labels (LNL) aims to improve the model generalization when facing data with noisy labels, and existing methods generally assume that noisy labels come from known classes, called closed-set noise. H... 详细信息
来源: 评论
Big-Moe: Bypassing Isolated Gating For Generalized Multimodal Face Anti-Spoofing
Big-Moe: Bypassing Isolated Gating For Generalized Multimoda...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Yingjie Ma Zitong Yu Xun Lin Weicheng Xie Linlin Shen College of Computer Science and Software Engineering Shenzhen University Great Bay University National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Guangdong Provincial Key Laboratory of Intelligent Information Processing
In the domain of facial recognition security, multimodal Face Anti-Spoofing (FAS) is essential for countering presentation attacks. However, existing technologies encounter challenges due to modality biases and imbala... 详细信息
来源: 评论
DEGSTalk: Decomposed Per-Embedding Gaussian Fields for Hair-Preserving Talking Face Synthesis
arXiv
收藏 引用
arXiv 2024年
作者: Deng, Kaijun Zheng, Dezhi Xie, Jindong Wang, Jinbao Xie, Weicheng Shen, Linlin Song, Siyang Computer Vision Institute School of Computer Science and Software Engineering Shenzhen University China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China Guangdong Provincial Key Laboratory of Intelligent Information Processing China Department of Computer Science University of Exeter United Kingdom
Accurately synthesizing talking face videos and capturing fine facial features for individuals with long hair presents a significant challenge. To tackle these challenges in existing methods, we propose a decomposed p... 详细信息
来源: 评论
Class-Aware Prompting for Federated Few-Shot Class-Incremental Learning
收藏 引用
IEEE Transactions on Circuits and systems for Video Technology 2025年
作者: Liang, Fang-Yi Zhan, Yu-Wei Liu, Jiale Zhang, Chong-Yu Chen, Zhen-Duo Luo, Xin Xu, Xin-Shun Shandong University School of Software Jinan250101 China Tsinghua University Department of Computer Science and Technology Beijing100084 China Yunnan Key Laboratory of Software Engineering Kunming650504 China
Few-Shot Class-Incremental Learning (FSCIL) aims to continuously learn new classes from limited samples while preventing catastrophic forgetting. With the increasing distribution of learning data across different clie... 详细信息
来源: 评论
ROS Supported Heterogeneous Multiple Robots Registration and Communication with User Instructions  2
ROS Supported Heterogeneous Multiple Robots Registration and...
收藏 引用
2nd International Conference on Advanced Research in Computing, ICARC 2022
作者: Rajapaksha, U.U. Samantha Jayawardena, Chandimal MacDonald, Bruce A. Sri Lanka Institute of Information Technology Department of Information Technology Malabe Sri Lanka Sri Lanka Institute of Information Technology Department of Computer System and Engineering Malabe Sri Lanka University of Auckland Department of Electrical Computer and Software Engineering Auckland New Zealand
Different types of heterogeneous multiple service robots are working in the same environment to help humans in many ways in a smart house. These service robots have different capabilities based on the different contro... 详细信息
来源: 评论
IBATree: A Novel Method for Interpretable Cancer Cell Diagnosis Using Information Bottleneck Attribution
IBATree: A Novel Method for Interpretable Cancer Cell Diagno...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Muhammad Umair Raza Jie Chen Adil Nawaz Faisal Saeed Victor C.M. Leung Jianqiang Li Zhaoxia Wang College of Computer Science and Software Engineering Shenzhen University China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China Department of Gastroenterology Shenzhen Children’s Hospital China
Deep Neural Networks (DNNs) have demonstrated remarkable performance in classification and regression tasks on RGB-based pathological inputs. The network’s prediction mechanism must be interpretable to establish trus... 详细信息
来源: 评论
Multi-Stage Transfer Learning Evolutionary Algorithm for Dynamic Multiobjective Optimization
Multi-Stage Transfer Learning Evolutionary Algorithm for Dyn...
收藏 引用
Congress on Evolutionary Computation
作者: Qianhui Wang Qingling Zhu Junkai Ji College of Computer Science and Software Engineering Shenzhen University Shenzhen China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen PR China
Recently, the application of transfer learning within dynamic multiobjective evolutionary algorithms (DMOEAs) has shown significant potential to solve dynamic multiobjective optimization problems (DMOPs). This approac... 详细信息
来源: 评论
A Comprehensive Survey on Communication-Efficient Federated Learning in Mobile Edge Environments
收藏 引用
IEEE Communications Surveys and Tutorials 2025年
作者: Jia, Ninghui Qu, Zhihao Ye, Baoliu Wang, Yanyan Hu, Shihong Guo, Song Hohai University Key Laboratory of Water Big Data Technology of Ministry of Water Resources College of Computer Science and Software Engineering Nanjing211100 China Nanjing University State Key Laboratory for Novel Software Technology Department of Computer Science and Technology Nanjing210023 China The Hong Kong University of Science and Technology Department of Computer Science and Engineering Kowloon Hong Kong
In traditional centralized machine learning, transmitting raw data to a cloud center incurs high communication costs and raises privacy concerns. This is particularly challenging in mobile edge environments, where dev... 详细信息
来源: 评论