Fog computing has recently developed as a new paradigm with the aim of addressing time-sensitive applications better than with cloud computing by placing and processing tasks in close proximity to the data ***,the maj...
详细信息
Fog computing has recently developed as a new paradigm with the aim of addressing time-sensitive applications better than with cloud computing by placing and processing tasks in close proximity to the data ***,the majority of the fog nodes in this environment are geographically scattered with resources that are limited in terms of capabilities compared to cloud nodes,thus making the application placement problem more complex than that in cloud *** approach for cost-efficient application placement in fog-cloud computing environments that combines the benefits of both fog and cloud computing to optimize the placement of applications and services while minimizing *** approach is particularly relevant in scenarios where latency,resource constraints,and cost considerations are crucial factors for the deployment of *** this study,we propose a hybrid approach that combines a genetic algorithm(GA)with the Flamingo Search Algorithm(FSA)to place application modules while minimizing *** consider four cost-types for application deployment:Computation,communication,energy consumption,and *** proposed hybrid approach is called GA-FSA and is designed to place the application modules considering the deadline of the application and deploy them appropriately to fog or cloud nodes to curtail the overall cost of the *** extensive simulation is conducted to assess the performance of the proposed approach compared to other state-of-the-art *** results demonstrate that GA-FSA approach is superior to the other approaches with respect to task guarantee ratio(TGR)and total cost.
Advancements in neuromorphic computing have given an impetus to the development of systems with adaptive behavior,dynamic responses,and energy efficiency *** charge-based or emerging memory technologies such as memris...
详细信息
Advancements in neuromorphic computing have given an impetus to the development of systems with adaptive behavior,dynamic responses,and energy efficiency *** charge-based or emerging memory technologies such as memristors have been developed to emulate synaptic plasticity,replicating the key functionality of neurons—integrating diverse presynaptic inputs to fire electrical impulses—has remained *** this study,we developed reconfigurable metal-oxide-semiconductor capacitors(MOSCaps)based on hafnium diselenide(HfSe2).The proposed devices exhibit(1)optoelectronic synaptic features and perform separate stimulus-associated learning,indicating considerable adaptive neuron emulation,(2)dual light-enabled charge-trapping and memcapacitive behavior within the same MOSCap device,whose threshold voltage and capacitance vary based on the light intensity across the visible spectrum,(3)memcapacitor volatility tuning based on the biasing conditions,enabling the transition from volatile light sensing to non-volatile optical data *** reconfigurability and multifunctionality of MOSCap were used to integrate the device into a leaky integrate-and-fire neuron model within a spiking neural network to dynamically adjust firing patterns based on light stimuli and detect exoplanets through variations in light intensity.
The rapid advancement of technology has given rise to medical cyber-physical systems (MCPS), a subset of cyber-physical systems (CPS) specifically tailored for patient care and healthcare providers. MCPS generate subs...
详细信息
In the realm of education, the pursuit of effective learning outcomes often faces the challenge of limited resources. This paper explores the intersection of maximizing learning outcomes and minimizing costs through a...
详细信息
One of themost prominent research areas in information technology is the Internet of Things (IoT) as its applications are widely used, such as structural monitoring, health care management systems, agriculture and bat...
详细信息
One of themost prominent research areas in information technology is the Internet of Things (IoT) as its applications are widely used, such as structural monitoring, health care management systems, agriculture and battlefield management, and so on. Due to its self-organizing network and simple installation of the network, the researchers have been attracted to pursue research in the various fields of IoTs. However, a huge amount of work has been addressed on various problems confronted by IoT. The nodes densely deploy over critical environments and those are operated on tiny batteries. Moreover, the replacement of dead batteries in the nodes is almost impractical. Therefore, the problem of energy preservation and maximization of IoT networks has become the most prominent research area. However, numerous state-of-The-Art algorithms have addressed this issue. Thus, it has become necessary to gather the information and send it to the base station in an optimized method to maximize the network. Therefore, in this article, we propose a novel quantum-informed ant colony optimization (ACO) routing algorithm with the efficient encoding scheme of cluster head selection and derivation of information heuristic factors. The algorithm has been tested by simulation for various network scenarios. The simulation results of the proposed algorithm show its efficacy over a few existing evolutionary algorithms using various performance metrics, such as residual energy of the network, network lifetime, and the number of live IoT nodes. Impact Statement-Toward IoT-based applications, here we presented the Quantum-inspired ACO clustering algorithm for network lifetime. IoT nodes in the clustering phase choose theirCH through the distance between cluster member IoT nodes and the residual energy. Thus, CH selection reduces the energy consumption of member IoT nodes. Therefore, our significant contributions are summarized as follows. i. Developing Quantum-informed ACO clustered routing algor
Automated analysis of breast cancer (BC) histopathology images is a challenging task due to the high resolution, multiple magnifications, color variations, the presence of image artifacts, and morphological variabilit...
详细信息
An increasing number of road accidents, a major global issue, are linked to growing demands for faster vehicle speeds. Analytical research highlights the significance of self-visual distraction events for drivers in t...
详细信息
Link prediction in complex networks is a fundamental problem with applications in diverse domains, from social networks to biological systems. Traditional approaches often struggle to capture intricate relationships i...
详细信息
Deep learning technology has extensive application in the classification and recognition of medical images. However, several challenges persist in such application, such as the need for acquiring large-scale labeled d...
详细信息
Thyroid disorders are increasingly prevalent, making early detection crucial for reducing mortality and complications. Accurate prediction of disease progression and understanding the interplay of clinical features ar...
详细信息
暂无评论