The article describes a new method for malware classification,based on a Machine Learning(ML)model architecture specifically designed for malware detection,enabling real-time and accurate malware *** an innovative fea...
详细信息
The article describes a new method for malware classification,based on a Machine Learning(ML)model architecture specifically designed for malware detection,enabling real-time and accurate malware *** an innovative feature dimensionality reduction technique called the Interpolation-based Feature Dimensionality Reduction Technique(IFDRT),the authors have significantly reduced the feature space while retaining critical information necessary for malware *** technique optimizes the model’s performance and reduces computational *** proposed method is demonstrated by applying it to the BODMAS malware dataset,which contains 57,293 malware samples and 77,142 benign samples,each with a 2381-feature *** the IFDRT method,the dataset is transformed,reducing the number of features while maintaining essential data for accurate *** evaluation results show outstanding performance,with an F1 score of 0.984 and a high accuracy of 98.5%using only two reduced *** demonstrates the method’s ability to classify malware samples accurately while minimizing processing *** method allows for improving computational efficiency by reducing the feature space,which decreases the memory and time requirements for training and *** new method’s effectiveness is confirmed by the calculations,which indicate significant improvements in malware classification accuracy and *** research results enhance existing malware detection techniques and can be applied in various cybersecurity applications,including real-timemalware detection on resource-constrained *** and scientific contribution lie in the development of the IFDRT method,which provides a robust and efficient solution for feature reduction in ML-based malware classification,paving the way for more effective and scalable cybersecurity measures.
The cyber-physical production system (CPPS) was developed for the interconnection between operational technology (OT) and information and communication technology (ICT) among the machines and decentralized production ...
详细信息
Dispensing generic drugs instead of original drugs from pharmacies may cause adverse drug events to patients. It is difficult to separate between generic drugs and originals due to their similarities, except for impri...
详细信息
ISBN:
(数字)9798350383027
ISBN:
(纸本)9798350383034
Dispensing generic drugs instead of original drugs from pharmacies may cause adverse drug events to patients. It is difficult to separate between generic drugs and originals due to their similarities, except for imprints on the tablets. In this paper, a vision-based medicine tablets classification system using Convolutional Neural Networks (CNN) with a transfer learning approach is proposed. The proposed classification system aims to helps its user distinguish between the original drugs and generic drugs based on imprints on the medicine tablets. Multiple CNN models are created and tested as the classifier for the drug classification system. Three well-known CNN models are chosen as base models for creating CNNs with the transfer learning, including VGG16, Inception-V3, and ResNet50-V2. The developed CNN models are tested with images of medicine tablet taken from smartphones. Results from the experiments are evaluated through accuracies, precisions, recalls, and F-1 scores. Experimental results show satisfying performances of the proposed system in classifying original drugs and generic drugs using visual information.
We report a simple, vacuum-compatible fiber attach process for in situ study of grating-coupled photonic devices. The robustness of this technique is demonstrated on grating-coupled waveguides exposed to multiple X-ra...
详细信息
Recurrent Neural Networks (RNNs) are commonly used in data-driven approaches to estimate the Remaining Useful Lifetime (RUL) of power electronic devices. RNNs are preferred because their intrinsic feedback mechanisms ...
详细信息
ISBN:
(数字)9798350360585
ISBN:
(纸本)9798350360592
Recurrent Neural Networks (RNNs) are commonly used in data-driven approaches to estimate the Remaining Useful Lifetime (RUL) of power electronic devices. RNNs are preferred because their intrinsic feedback mechanisms are better suited to model time-series data. However, the impact of RNN complexity on estimation accuracy is rarely discussed in the literature. This issue is important because choosing a lower-complexity model that delivers the same or similar performance as a higher-complexity model can increase implementation efficiency. In the paper, we use three RNN models, namely, the vanilla version, LSTM (Long Short Term Memory) and GRU (Gated Recurrent Unit) to conduct RUL estimation for power electronic devices. We use two accelerated aging datasets, one dataset targeting the package failure of MOSFETs, and the other dataset targeting package failure of power diodes. Our study shows that a lower-complexity RNN does not necessarily deliver a lower performance. Similarly, a higher-complexity model does not assure a higher performance. As such, our work highlights the importance of selecting a proper neural network for RUL estimation not biased towards complex models. This is especially useful and important for implementing such RUL estimation techniques in embedded resource-constrained and speed-limited computins platforms.
We report a simple, vacuum-compatible fiber attach process for in situ study of grating-coupled photonic devices. The robustness of this technique is demonstrated on grating-coupled waveguides exposed to multiple X-ra...
详细信息
In offshore aquaculture operations, personnel equipped with diving gear are often necessary to inspect the underwater net cages for damage, particularly on the sea floor. This manual inspection process is time-consumi...
详细信息
ISBN:
(数字)9798331530839
ISBN:
(纸本)9798331530846
In offshore aquaculture operations, personnel equipped with diving gear are often necessary to inspect the underwater net cages for damage, particularly on the sea floor. This manual inspection process is time-consuming and complex. To overcome this problem, this paper proposes a computer vision solution for identifying damage in underwater net cages to address the inefficiencies and challenges of traditional manual inspections. The proposed scheme utilizes a high-performance multi-branch computational architecture designed based on ShuffleNet architecture to detect net cage damage more efficiently. Experimental results demonstrate that this work performs well on the ImageNet ILSVRC-2010 dataset and achieves an accuracy of 88.54% in underwater net damage detection.
In this work, we present a novel algorithm design methodology that finds the optimal algorithm as a function of inequalities. Specifically, we restrict convergence analyses of algorithms to use a prespecified subset o...
In this work, we present a novel algorithm design methodology that finds the optimal algorithm as a function of inequalities. Specifically, we restrict convergence analyses of algorithms to use a prespecified subset of inequalities, rather than utilizing all true inequalities, and find the optimal algorithm subject to this restriction. This methodology allows us to design algorithms with certain desired characteristics. As concrete demonstrations of this methodology, we find new state-of-the-art accelerated first-order gradient methods using randomized coordinate updates and backtracking line searches.
Software-defined networking(SDN)is a new paradigm that promises to change by breaking vertical integration,decoupling network control logic from the underlying routers and switches,promoting(logical)network control ce...
详细信息
Software-defined networking(SDN)is a new paradigm that promises to change by breaking vertical integration,decoupling network control logic from the underlying routers and switches,promoting(logical)network control centralization,and introducing network ***,the controller is similarly vulnerable to a“single point of failure”,an attacker can execute a distributed denial of service(DDoS)attack that invalidates the controller and compromises the network security in *** address the problem of DDoS traffic detection in SDN,a novel detection approach based on information entropy and deep neural network(DNN)is *** approach contains a DNN-based DDoS traffic detection module and an information-based entropy initial inspection *** initial inspection module detects the suspicious network traffic by computing the information entropy value of the data packet’s source and destination Internet Protocol(IP)addresses,and then identifies it using the DDoS detection module based on *** assaults were found when suspected irregular traffic was *** reveal that the algorithm recognizes DDoS activity at a rate of more than 99%,with a much better accuracy *** false alarm rate(FAR)is much lower than that of the information entropy-based detection ***,the proposed framework can shorten the detection time and improve the resource utilization efficiency.
暂无评论