咨询与建议

限定检索结果

文献类型

  • 1,887 篇 期刊文献
  • 708 篇 会议
  • 9 册 图书

馆藏范围

  • 2,604 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,549 篇 工学
    • 891 篇 计算机科学与技术...
    • 757 篇 软件工程
    • 262 篇 生物工程
    • 256 篇 信息与通信工程
    • 250 篇 生物医学工程(可授...
    • 187 篇 电气工程
    • 181 篇 核科学与技术
    • 175 篇 光学工程
    • 157 篇 控制科学与工程
    • 133 篇 电子科学与技术(可...
    • 122 篇 化学工程与技术
    • 69 篇 机械工程
    • 58 篇 仪器科学与技术
    • 58 篇 动力工程及工程热...
    • 47 篇 交通运输工程
    • 46 篇 安全科学与工程
  • 1,391 篇 理学
    • 770 篇 物理学
    • 363 篇 数学
    • 337 篇 生物学
    • 178 篇 统计学(可授理学、...
    • 152 篇 化学
    • 69 篇 系统科学
    • 47 篇 地球物理学
  • 342 篇 管理学
    • 191 篇 管理科学与工程(可...
    • 145 篇 图书情报与档案管...
    • 81 篇 工商管理
  • 242 篇 医学
    • 204 篇 临床医学
    • 152 篇 基础医学(可授医学...
    • 99 篇 药学(可授医学、理...
    • 77 篇 公共卫生与预防医...
  • 61 篇 法学
  • 59 篇 农学
  • 30 篇 经济学
  • 26 篇 教育学
  • 5 篇 文学
  • 5 篇 艺术学
  • 2 篇 军事学

主题

  • 150 篇 hadron colliders
  • 85 篇 deep learning
  • 75 篇 hadrons
  • 58 篇 machine learning
  • 47 篇 hadronic decays
  • 42 篇 bottom mesons
  • 38 篇 branching fracti...
  • 38 篇 accuracy
  • 35 篇 particle decays
  • 33 篇 training
  • 32 篇 w & z bosons
  • 30 篇 feature extracti...
  • 29 篇 artificial intel...
  • 28 篇 higgs bosons
  • 28 篇 flavor changing ...
  • 27 篇 leptonic, semile...
  • 25 篇 predictive model...
  • 24 篇 charmed mesons
  • 23 篇 computational mo...
  • 22 篇 magnetic resonan...

机构

  • 456 篇 department of ph...
  • 390 篇 cavendish labora...
  • 387 篇 iccub universita...
  • 382 篇 university of ch...
  • 375 篇 horia hulubei na...
  • 365 篇 h.h. wills physi...
  • 363 篇 van swinderen in...
  • 361 篇 school of physic...
  • 344 篇 department of ph...
  • 341 篇 imperial college...
  • 339 篇 center for high ...
  • 337 篇 yandex school of...
  • 335 篇 stfc rutherford ...
  • 333 篇 oliver lodge lab...
  • 332 篇 institute of par...
  • 323 篇 physikalisches i...
  • 321 篇 infn sezione di ...
  • 320 篇 henryk niewodnic...
  • 315 篇 nikhef national ...
  • 311 篇 infn sezione di ...

作者

  • 233 篇 beiter a.
  • 217 篇 barter w.
  • 213 篇 bellee v.
  • 197 篇 casse g.
  • 195 篇 bowcock t.j.v.
  • 189 篇 blake t.
  • 187 篇 borsato m.
  • 187 篇 betancourt c.
  • 187 篇 bediaga i.
  • 187 篇 amato s.
  • 185 篇 boettcher t.
  • 185 篇 braun s.
  • 184 篇 borisyak m.
  • 184 篇 bizzeti a.
  • 183 篇 baryshnikov f.
  • 181 篇 bencivenni g.
  • 176 篇 brundu d.
  • 173 篇 back j.j.
  • 173 篇 bay a.
  • 169 篇 bursche a.

语言

  • 2,218 篇 英文
  • 366 篇 其他
  • 21 篇 中文
  • 2 篇 德文
  • 1 篇 法文
检索条件"机构=Department of Computer Engineering and AI and Data Science Application and Research Center"
2604 条 记 录,以下是1281-1290 订阅
排序:
A practical guide to machine learning interatomic potentials – Status and future
arXiv
收藏 引用
arXiv 2025年
作者: Jacobs, Ryan Morgan, Dane Attarian, Siamak Meng, Jun Shen, Chen Wu, Zhenghao Xie, Clare Yijia Yang, Julia H. Artrith, Nongnuch Blaiszik, Ben Ceder, Gerbrand Choudhary, Kamal Csanyi, Gabor Cubuk, Ekin Dogus Deng, Bowen Drautz, Ralf Fu, Xiang Godwin, Jonathan Honavar, Vasant Isayev, Olexandr Johansson, Anders Kozinsky, Boris Martiniani, Stefano Ong, Shyue Ping Poltavsky, Igor Schmidt, K.J. Takamoto, So Thompson, aidan Westermayr, Julia Wood, Brandon M. Department of Materials Science and Engineering University of Wisconsin-Madison MadisonWI55705 United States Harvard University Center for the Environment Harvard University CambridgeMA02138 United States John A. Paulson School of Engineering and Applied Sciences Harvard University CambridgeMA02138 United States Materials Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Utrecht3584 CG Netherlands Globus University of Chicago ChicagoIL United States Data Science and Learning Division Argonne National Laboratory LemontIL United States Department of Materials Science and Engineering University of California BerkeleyCA94720 United States Materials Sciences Division Lawrence Berkeley National Laboratory CA94720 United States Material Measurement Laboratory National Institute of Standards and Technology GaithersburgMD20899 United States Department of Engineering University of Cambridge CambridgeCB2 1PZ United Kingdom Google DeepMind Mountain ViewCA United States Ruhr-Universität Bochum Bochum44780 Germany Meta United States Orbital Materials London United Kingdom Department of Computer Science and Engineering The Pennsylvania State University University ParkPA United States College of Information Sciences and Technology The Pennsylvania State University University ParkPA United States Artificial Intelligence Research Laboratory The Pennsylvania State University University ParkPA United States Center for Artificial Intelligence Foundations and Scientific Applications The Pennsylvania State University University ParkPA United States Department of Chemistry Mellon College of Science Carnegie Mellon University PittsburghPA15213 United States Computational Biology Department School of Computer Science Carnegie Mellon University PittsburghPA15213 United States Courant Institute of Mathematical Sciences New York University New YorkNY10003 United States Center for Soft Matter Research Department of P
The rapid development and large body of literature on machine learning interatomic potentials (MLIPs) can make it difficult to know how to proceed for researchers who are not experts but wish to use these tools. The s... 详细信息
来源: 评论
An iterative framework for self-supervised deep speaker representation learning
arXiv
收藏 引用
arXiv 2020年
作者: Cai, Danwei Wang, Weiqing Li, Ming Department of Electrical and Computer Engineering Duke University Durham United States Data Science Research Center Duke Kunshan University Kunshan China
In this paper, we propose an iterative framework for self-supervised speaker representation learning based on a deep neural network (DNN). The framework starts with training a self-supervision speaker embedding networ... 详细信息
来源: 评论
IoT-enabled social relationships meet artificial social intelligence
arXiv
收藏 引用
arXiv 2021年
作者: Dhelim, Sahraoui Ning, Huansheng Farha, Fadi Chen, Liming Atzori, Luigi Daneshmand, Mahmoud The School of Computer and Communication Engineering University of Science and Technology Beijing Beijing100083 China Beijing Engineering Research Center for Cyberspace Data Analysis and Applications Beijing China The School of Computing Ulster University NewtownabbeyBT37 0QB United Kingdom The Department of Electrical and Electronic Engineering University of Cagliari piazza d'Armi Cagliari09123 Italy The Department of Business Intelligence and Analytics The Department of Computer Science Stevens Institute of Technology Hoboken United States
With the recent advances of the Internet of Things, and the increasing accessibility to ubiquitous computing resources and mobile devices, the prevalence of rich media contents, and the ensuing social, economic, and c... 详细信息
来源: 评论
A deep learning-based model reduction (DeePMR) method for simplifying chemical kinetics
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Zhiwei Zhang, Yaoyu Zhao, Enhan Ju, Yiguang Weinan, E. Xu, Zhi-Qin John Zhang, Tianhan Institute of Natural Sciences School of Mathematical Sciences Shanghai Jiao Tong University Shanghai200240 China MOE-LSC and Qing Yuan Research Institute Shanghai Jiao Tong University Shanghai200240 China Shanghai Center for Brain Science and Brain-Inspired Technology Shanghai200240 China Department of Mechanical and Aerospace Engineering Princeton University NJ08540 United States School of Mathematical Sciences Peking University Beijing100871 China AI for Science Institute Beijing100080 China School of Electronics Engineering and Computer Science Peking University Beijing100871 China
A deep learning-based model reduction (DeePMR) method for simplifying chemical kinetics is proposed and validated using high-temperature auto-ignitions, perfectly stirred reactors (PSR), and one-dimensional freely pro... 详细信息
来源: 评论
A Correlation Visual Analytics System for air Quality
收藏 引用
Chinese Journal of Electronics 2018年 第5期27卷 920-926页
作者: DU Yi Abish Malik ZHOU Lianke ZHOU Yuanchun Department of Big Data Technology and Application Development Computer Network Information CenterChinese Academy of Sciences Davista Technologies College of Computer Science and Technology at Harbin Engineering University
A visual analytics system is proposed to reveal the lead/lag correlation when air pollution is detected. In this system, an Overview + Detail approach is utilized for analyzing the correlation of air quality under bot... 详细信息
来源: 评论
The DKU-DukeECE systems for VoxCeleb speaker recognition challenge 2020
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Weiqing Cai, Danwei Qin, Xiaoyi Li, Ming Department of Electrical and Computer Engineering Duke University Durham United States Data Science Research Center Duke Kunshan University Kunshan China
In this paper, we present the system submission for the VoxCeleb Speaker Recognition Challenge 2020 (VoxSRC-20) by the DKU-DukeECE team. For track 1, we explore various kinds of state-of-the-art front-end extractors w... 详细信息
来源: 评论
Harmonized-Multinational qEEG norms (HarMNqEEG)
收藏 引用
NEUROIMAGE 2022年 256卷 119190-119190页
作者: Li, Min Wang, Ying Lopez-Naranjo, Carlos Hu, Shiang Reyes, Ronaldo Cesar Garcia Paz-Linares, Deirel Areces-Gonzalez, Ariosky Hamid, aini Ismafairus Abd Evans, Alan C. Savostyanov, Alexander N. Calzada-Reyes, Ana Villringer, Arno Tobon-Quintero, Carlos A. Garcia-Agustin, Daysi Yao, Dezhong Dong, Li Aubert-Vazquez, Eduardo Reza, Faruque Razzaq, Fuleah Abdul Omar, Hazim Abdullah, Jafri Malin Galler, Janina R. Ochoa-Gomez, John F. Prichep, Leslie S. Galan-Garcia, Lidice Morales-Chacon, Lilia Valdes-Sosa, Mitchell J. Trondle, Marius Zulkifly, Mohd Faizal Mohd Rahman, Muhammad Riddha Bin Abdul Milakhina, Natalya S. Langer, Nicolas Rudych, Pavel Koenig, Thomas Virues-Alba, Trinidad A. Lei, Xu Bringas-Vega, Maria L. Bosch-Bayard, Jorge F. Valdes-Sosa, Pedro Antonio [a]The Clinical Hospital of Chengdu Brain Science Institute MOE Key Lab for Neuroinformation School of Life Science and Technology University of Electronic Science and Technology of China Chengdu China [b]Cuban Center for Neurocience La Habana Cuba [c]McGill Centre for Integrative Neuroscience Ludmer Centre for Neuroinformatics and Mental Health Montreal Neurological Institute Canada [d]Department of Neurosciences School of Medical Sciences Universiti Sains Malaysia Universiti Sains Malaysia Health Campus Kota Bharu Kelantan 16150 Malaysia [e]Brain and Behaviour Cluster School of Medical Sciences Universiti Sains Malaysia Health Campus Kota Bharu Kelantan 16150 Malaysia [f]Hospital Universiti Sains Malaysia Universiti Sains Malaysia Health Campus Kota Bharu Kelantan 16150 Malaysia [g]Humanitarian Institute Novosibirsk State University Novosibirsk 630090 Russia [h]Laboratory of Psychophysiology of Individual Differences Federal State Budgetary Scientific Institution Scientific Research Institute of Neurosciences and Medicine Novosibirsk 630117 Russia [i]Laboratory of Psychological Genetics at the Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences Novosibirsk 630090 Russia [j]University of Pinar del Río “Hermanos Saiz Montes de Oca” Pinar del Río Cuba [k]Department of Neurology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany [l]Department of Cognitive Neurology University Hospital Leipzig Leipzig Germany [m]Center for Stroke Research Charité-Universitätsmedizin Berlin Berlin Germany [n]Grupo Neuropsicología y Conducta - GRUNECO Faculty of Medicine Universidad de Antioquia Colombia [o]Research Department Institución Prestadora de Servicios de Salud IPS Universitaria Colombia [p]The Cuban center aging longevity and health Havana Cuba [q]Research Unit of NeuroInformation Chinese Academy of Medical Sciences Chengdu 2019RU035 China [r]School of Electrical Engineering Zhengzhou University Zhengzhou 4500
This paper extends frequency domain quantitative electroencephalography (qEEG) methods pursuing higher sensitivity to detect Brain Developmental Disorders. Prior qEEG work lacked integration of cross-spectral informat... 详细信息
来源: 评论
Explainable ai unlocks temperature-driven oscillatory viscoelastic transitions in sesame protein isolate during integrated heating–cooling cycles
收藏 引用
Food Hydrocolloids 2025年 169卷
作者: Mustafa Tahsin Yilmaz Abdulaziz S. Alkabaa Furkan Turker Saricaoglu Ahmad H. Milyani Osman Gul Mahmut Ekrem Parlak Wael S. Hassanein Department of Industrial Engineering Faculty of Engineering King Abdulaziz University Jeddah Saudi Arabia Center of Research Excellence in Artificial Intelligence and Data Science (AIADS) King Abdulaziz University Jeddah Saudi Arabia Department of Food Engineering Faculty of Engineering and Natural Science Bursa Technical University Bursa Türkiye Department of Electrical and Computer Engineering Faculty of Engineering King Abdulaziz University Jeddah Saudi Arabia Center of Excellence in Intelligent Engineering Systems (CEIES) King Abdulaziz University Jeddah Saudi Arabia Department of Food Engineering Faculty of Engineering and Architecture Kastamonu University Kastamonu Türkiye
The temperature-dependent viscoelastic behavior of sesame protein isolate (SePI) gels was investigated across integrated heating–cooling cycles (25–95 °C) under oscillatory rheometry (10 % strain, 0.1...
来源: 评论
Predicting Large-scale Protein-protein Interactions by Extracting Coevolutionary Patterns with MapReduce Paradigm
Predicting Large-scale Protein-protein Interactions by Extra...
收藏 引用
IEEE International Conference on Systems, Man and Cybernetics
作者: Lun Hu Bo-Wei Zhao Shicheng Yang Xin Luo MengChu Zhou Xinjiang Technical Institute of Physics and Chemistry Chinese Academy of Sciences Urumqi China School of Computer Science and Technology Wuhan University of Technology Wuhan China Chongqing Engineering Research Center of Big Data Application for Smart Cities and Chongqing Key Laboratory of Big Data and Intelligent Computing Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing China Hengrui (Chongqing) Artificial Intelligence Research Center Cloudwalk China New Jersey Institute of Technology Newark NJ USA
Protein-protein interactions are of great significance for us to understand the functional mechanisms of proteins. With the rapid development of high-throughput genomic technology, the amount of protein-protein intera... 详细信息
来源: 评论
Spatial fuzzy C-means clustering and deep belief network for change detection in synthetic aperture radar images  5
Spatial fuzzy C-means clustering and deep belief network for...
收藏 引用
IET International Radar Conference 2020, IET IRC 2020
作者: Qi, Wenwen Wu, Lin Guo, Zhengwei Huang, Dan College of Computer and Information Engineering Henan University Kaifeng475004 China Henan Key Laboratory of Big Data Analysis and Processing Henan University Kaifeng475004 China Henan Engineering Research Center of Intelligent Technology and Application Henan University Kaifeng475004 China College of Environment and Planning Henan University Kaifeng475004 China Department of Laboratory and Equipment Management Henan University Kaifeng475004 China
In this study, spatial fuzzy c-means (SFCM) clustering and deep belief network (DBN) method is presented for change detection in SAR images. There are three primary steps of this approach, they are given as follows: 1... 详细信息
来源: 评论