Chronic renal disease is the term used to describe kidney function that gradually declines. The kidneys’ final byproduct of eliminating waste and surplus fluid from the bloodstream is urine. Abnormal accumulations of...
详细信息
Glaucoma is currently one of the most significant causes of permanent blindness. Fundus imaging is the most popular glaucoma screening method because of the compromises it has to make in terms of portability, size, an...
详细信息
Glaucoma is currently one of the most significant causes of permanent blindness. Fundus imaging is the most popular glaucoma screening method because of the compromises it has to make in terms of portability, size, and cost. In recent years, convolution neural networks (CNNs) have revolutionized computer vision. Convolution is a "local" CNN technique that is only applicable to a small region surrounding an image. Vision Transformers (ViT) use self-attention, which is a "global" activity since it collects information from the entire image. As a result, the ViT can successfully gather distant semantic relevance from an image. This study examined several optimizers, including Adamax, SGD, RMSprop, Adadelta, Adafactor, Nadam, and Adagrad. With 1750 Healthy and Glaucoma images in the IEEE fundus image dataset and 4800 healthy and glaucoma images in the LAG fundus image dataset, we trained and tested the ViT model on these datasets. Additionally, the datasets underwent image scaling, auto-rotation, and auto-contrast adjustment via adaptive equalization during preprocessing. The results demonstrated that preparing the provided dataset with various optimizers improved accuracy and other performance metrics. Additionally, according to the results, the Nadam Optimizer improved accuracy in the adaptive equalized preprocessing of the IEEE dataset by up to 97.8% and in the adaptive equalized preprocessing of the LAG dataset by up to 92%, both of which were followed by auto rotation and image resizing processes. In addition to integrating our vision transformer model with the shift tokenization model, we also combined ViT with a hybrid model that consisted of six different models, including SVM, Gaussian NB, Bernoulli NB, Decision Tree, KNN, and Random Forest, based on which optimizer was the most successful for each dataset. Empirical results show that the SVM Model worked well and improved accuracy by up to 93% with precision of up to 94% in the adaptive equalization preprocess
The increase in waste and related environmental problems is one of the major problems compromising health and environmental quality in urban and rural areas. There are a number of policies that can be implemented to r...
详细信息
To analyse the student’s academic performance, a new prediction model is developed. This proposed model collects the student’s data from standard online sources. At first, these gathered data are pre-processed by ce...
详细信息
Our world is rapidly evolving toward the Internet of Things (IoT), that connects all gadgets to digital services and simplifies our lives. As IoT devices expand, network vulnerabilities may rise, leading to more netwo...
详细信息
A mobile ad hoc network (MANET) is an independent wireless temporary network established by employing a set of mobile nodes (i.e. laptops, smartphones, iPods, etc.) appropriate for the environment in which the network...
详细信息
A mobile ad hoc network (MANET) is an independent wireless temporary network established by employing a set of mobile nodes (i.e. laptops, smartphones, iPods, etc.) appropriate for the environment in which the network infrastructures are not fixed. The most common problems faced by MANET are energy efficiency, high energy consumption, low network lifetime as well as high traffic overhead which create an impact on overall network topology. Hence, it is necessary to provide an energy-effective CH election to take steps against such issues. Therefore, this paper proposes a novel model to enhance the network lifetime and energy efficiency by performing a routing strategy in MANET. In this paper, an optimal CH is selected by proposing a novel Fuzzy Marine White Shark optimization (FMWSO) algorithm which is obtained by integrating fuzzy operation with two optimization algorithms namely the marine predator algorithm and white shark optimizer. The proposed approach comprises three diverse stages namely Generation of data, Cluster Generation and CH selection. A novel FMWSO algorithm is proposed in such a way to determine the CH selection in MANET thereby enhancing the network topology, network lifetime and minimizing the overhead rate, and energy consumption. Finally, the performance of the proposed FMWSO approach is compared with various other existing techniques to determine the effectiveness of the system. The proposed FMWSO approach consumes minimum energy of 0.62 mJ which is lower than other approaches.
Approximately 20% of the world’s population suffers from mental health disorders. Despite this, resources for mental health around the world remain scarce, inequitable, and inefficient. With the rapid development of ...
详细信息
Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire *** recent advancements in digital pathology,Eosin and hematoxylin images provide enhanced clarit...
详细信息
Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire *** recent advancements in digital pathology,Eosin and hematoxylin images provide enhanced clarity in examiningmicroscopic features of breast tissues based on their staining *** cancer detection facilitates the quickening of the therapeutic process,thereby increasing survival *** analysis made by medical professionals,especially pathologists,is time-consuming and challenging,and there arises a need for automated breast cancer detection *** upcoming artificial intelligence platforms,especially deep learning models,play an important role in image diagnosis and ***,the histopathology biopsy images are taken from standard data ***,the gathered images are given as input to the Multi-Scale Dilated Vision Transformer,where the essential features are ***,the features are subjected to the Bidirectional Long Short-Term Memory(Bi-LSTM)for classifying the breast cancer *** efficacy of the model is evaluated using divergent *** compared with other methods,the proposed work reveals that it offers impressive results for detection.
Vehicular ad hoc networks (VANETs) role a vital play in allowing technology for future cooperative intelligent transportation systems (CITSs). Vehicles in VANETs transmit real-time data on their movement, traffic, and...
详细信息
Early identification of skin cancer is mandatory to minimize the worldwide death rate as this disease is covering more than 30% of mortality rates in young and adults. Researchers are in the move of proposing advanced...
详细信息
暂无评论