A novel cluster-based traffic offloading and user association (UA) algorithm alongside a multi-agent deep reinforcement learning (DRL) based base station (BS) activation mechanism is proposed in this paper. Our design...
详细信息
Inpatient falls from beds in hospitals are a common *** falls may result in severe *** problem can be addressed by continuous monitoring of patients using *** advancements in deep learning-based video analytics have m...
详细信息
Inpatient falls from beds in hospitals are a common *** falls may result in severe *** problem can be addressed by continuous monitoring of patients using *** advancements in deep learning-based video analytics have made this task of fall detection more effective and *** with fall detection,monitoring of different activities of the patients is also of significant concern to assess the improvement in their *** computation-intensive models are required to monitor every action of the patient *** requirement limits the applicability of such ***,to keep the model lightweight,the already designed fall detection networks can be extended to monitor the general activities of the patients along with the fall *** by the same notion,we propose a novel,lightweight,and efficient patient activity monitoring system that broadly classifies the patients’activities into fall,activity,and rest classes based on their *** whole network comprises three sub-networks,namely a Convolutional Neural Networks(CNN)based video compression network,a Lightweight Pose Network(LPN)and a Residual Network(ResNet)Mixer block-based activity recognition *** compression network compresses the video streams using deep learning networks for efficient storage and retrieval;after that,LPN estimates human ***,the activity recognition network classifies the patients’activities based on their *** proposed system shows an overall accuracy of approx.99.7% over a standard dataset with 99.63% fall detection accuracy and efficiently monitors different events,which may help monitor the falls and improve the inpatients’health.
The Telecare Medical Information System (TMIS) faces challenges in securely exchanging sensitive health information between TMIS nodes. A Mutual Authenticated Key Agreement (MAKA) scheme is used to eliminate security ...
详细信息
Within the electronic design automation(EDA) domain, artificial intelligence(AI)-driven solutions have emerged as formidable tools, yet they typically augment rather than redefine existing methodologies. These solutio...
详细信息
Within the electronic design automation(EDA) domain, artificial intelligence(AI)-driven solutions have emerged as formidable tools, yet they typically augment rather than redefine existing methodologies. These solutions often repurpose deep learning models from other domains, such as vision, text, and graph analytics, applying them to circuit design without tailoring to the unique complexities of electronic circuits. Such an “AI4EDA” approach falls short of achieving a holistic design synthesis and understanding,overlooking the intricate interplay of electrical, logical, and physical facets of circuit data. This study argues for a paradigm shift from AI4EDA towards AI-rooted EDA from the ground up, integrating AI at the core of the design process. Pivotal to this vision is the development of a multimodal circuit representation learning technique, poised to provide a comprehensive understanding by harmonizing and extracting insights from varied data sources, such as functional specifications, register-transfer level(RTL) designs, circuit netlists,and physical layouts. We champion the creation of large circuit models(LCMs) that are inherently multimodal, crafted to decode and express the rich semantics and structures of circuit data, thus fostering more resilient, efficient, and inventive design methodologies. Embracing this AI-rooted philosophy, we foresee a trajectory that transcends the current innovation plateau in EDA, igniting a profound “shift-left” in electronic design methodology. The envisioned advancements herald not just an evolution of existing EDA tools but a revolution, giving rise to novel instruments of design-tools that promise to radically enhance design productivity and inaugurate a new epoch where the optimization of circuit performance, power, and area(PPA) is achieved not incrementally, but through leaps that redefine the benchmarks of electronic systems' capabilities.
Integration of phase-change materials(PCMs)created a unique opportunity to implement reconfigurable photonics devices that their performance can be tuned depending on the target *** PCMs such as Ge-Sb-Te(GST)and Ge-Sb...
详细信息
Integration of phase-change materials(PCMs)created a unique opportunity to implement reconfigurable photonics devices that their performance can be tuned depending on the target *** PCMs such as Ge-Sb-Te(GST)and Ge-Sb-Se-Te(GSST)rely on melt-quench and high temperature annealing processes to change the organization of the molecules in the materials’*** a reorganization leads to different optical,electrical,and thermal properties which can be exploited to implement photonic memory cells that are able to store the data at different resistance or optical transmission *** the great promise of conventional PCMs for realizing reconfigurable photonic memories,their slow and extremely power-hungry thermal mechanisms make scaling the systems based on such devices *** addition,such materials do not offer a stable multi-level response over a long period of *** address these shortcomings,the research carried out in this study shows the proof of concept to implement next-generation photonic memory cells based on two-dimensional(2D)birefringence PCMs such as SnSe,which offer anisotropic optical properties that can be switched *** demonstrate that by leveraging the ultrafast and low-power crystallographic direction change of the material,the optical polarization state of the input optical signal can be *** enables the implementation of next-generation high-speed polarization-encodable photonic memory cells for future photonic computing *** to the conventional PCMs,the proposed SnSe-based photonic memory cells offer an ultrafast switching and low-loss optical response relying on ferroelectric property of SnSe to encode the data on the polarization state of the input optical *** a polarization encoding scheme also reduces memory read-out errors and alleviates the scalability limitations due to the optical insertion loss often seen in optical transmission encoding.
For point cloud registration, the purpose of this article is to propose a novel centralized random sample consensus (RANSAC) (C-RANSAC) registration with fast convergence and high accuracy. In our algorithm, the novel...
详细信息
Deep Learning (DL) models have demonstrated remarkable proficiency in image classification and recognition tasks, surpassing human capabilities. The observed enhancement in performance can be attributed to the utiliza...
详细信息
Deep Learning (DL) models have demonstrated remarkable proficiency in image classification and recognition tasks, surpassing human capabilities. The observed enhancement in performance can be attributed to the utilization of extensive datasets. Nevertheless, DL models have huge data requirements. Widening the learning capability of such models from limited samples even today remains a challenge, given the intrinsic constraints of small datasets. The trifecta of challenges, encompassing limited labeled datasets, privacy, poor generalization performance, and the costliness of annotations, further compounds the difficulty in achieving robust model performance. Overcoming the challenge of expanding the learning capabilities of Deep Learning models with limited sample sizes remains a pressing concern even today. To address this critical issue, our study conducts a meticulous examination of established methodologies, such as Data Augmentation and Transfer Learning, which offer promising solutions to data scarcity dilemmas. Data Augmentation, a powerful technique, amplifies the size of small datasets through a diverse array of strategies. These encompass geometric transformations, kernel filter manipulations, neural style transfer amalgamation, random erasing, Generative Adversarial Networks, augmentations in feature space, and adversarial and meta-learning training paradigms. Furthermore, Transfer Learning emerges as a crucial tool, leveraging pre-trained models to facilitate knowledge transfer between models or enabling the retraining of models on analogous datasets. Through our comprehensive investigation, we provide profound insights into how the synergistic application of these two techniques can significantly enhance the performance of classification tasks, effectively magnifying scarce datasets. This augmentation in data availability not only addresses the immediate challenges posed by limited datasets but also unlocks the full potential of working with Big Data in
Computed Tomography(CT)images have been extensively employed in disease diagnosis and treatment,causing a huge concern over the dose of radiation to which patients are *** the radiation dose to get a better image may ...
详细信息
Computed Tomography(CT)images have been extensively employed in disease diagnosis and treatment,causing a huge concern over the dose of radiation to which patients are *** the radiation dose to get a better image may lead to the development of genetic disorders and cancer in the patients;on the other hand,decreasing it by using a Low-Dose CT(LDCT)image may cause more noise and increased artifacts,which can compromise the ***,image reconstruction from LDCT image data is necessary to improve radiologists’judgment and *** study proposed three novel models for denoising LDCT images based on Wasserstein Generative Adversarial Network(WGAN).They were incorporated with different loss functions,including Visual Geometry Group(VGG),Structural Similarity Loss(SSIM),and Structurally Sensitive Loss(SSL),to reduce noise and preserve important information on LDCT images and investigate the effect of different types of loss ***,experiments have been conducted on the Graphical Processing Unit(GPU)and Central Processing Unit(CPU)to compare the performance of the proposed *** results demonstrated that images from the proposed WGAN-SSIM,WGAN-VGG-SSIM,and WGAN-VGG-SSL were denoised better than those from state-of-the-art models(WGAN,WGAN-VGG,and SMGAN)and converged to a stable equilibrium compared with WGAN and *** proposed models are effective in reducing noise,suppressing artifacts,and maintaining informative structure and texture details,especially WGAN-VGG-SSL which achieved a high peak-signalto-noise ratio(PNSR)on both GPU(26.1336)and CPU(25.8270).The average accuracy of WGAN-VGG-SSL outperformed that of the state-ofthe-art methods by 1 *** prove that theWGAN-VGG-SSL is more stable than the other models on both GPU and CPU.
Significant health hazards have been associated with the COVID-19 pandemic, especially for women, whose mental and physical health have suffered greatly. In order to predict the risk of COVID-19 in women, this study i...
详细信息
暂无评论