咨询与建议

限定检索结果

文献类型

  • 2,351 篇 期刊文献
  • 1,220 篇 会议
  • 9 册 图书

馆藏范围

  • 3,580 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,323 篇 工学
    • 1,508 篇 计算机科学与技术...
    • 1,247 篇 软件工程
    • 562 篇 信息与通信工程
    • 352 篇 电气工程
    • 314 篇 生物工程
    • 235 篇 电子科学与技术(可...
    • 229 篇 控制科学与工程
    • 217 篇 生物医学工程(可授...
    • 173 篇 光学工程
    • 157 篇 化学工程与技术
    • 126 篇 机械工程
    • 103 篇 动力工程及工程热...
    • 85 篇 交通运输工程
    • 84 篇 仪器科学与技术
    • 76 篇 核科学与技术
    • 71 篇 材料科学与工程(可...
    • 70 篇 土木工程
  • 1,694 篇 理学
    • 744 篇 数学
    • 654 篇 物理学
    • 403 篇 生物学
    • 275 篇 统计学(可授理学、...
    • 183 篇 化学
    • 120 篇 系统科学
  • 591 篇 管理学
    • 333 篇 管理科学与工程(可...
    • 272 篇 图书情报与档案管...
    • 165 篇 工商管理
  • 216 篇 医学
    • 177 篇 临床医学
    • 148 篇 基础医学(可授医学...
    • 92 篇 药学(可授医学、理...
  • 101 篇 法学
    • 81 篇 社会学
  • 63 篇 经济学
  • 47 篇 农学
  • 29 篇 教育学
  • 13 篇 文学
  • 7 篇 军事学
  • 4 篇 艺术学

主题

  • 74 篇 hadrons
  • 69 篇 deep learning
  • 68 篇 data mining
  • 63 篇 machine learning
  • 62 篇 training
  • 57 篇 feature extracti...
  • 54 篇 semantics
  • 50 篇 hadron colliders
  • 46 篇 hadronic decays
  • 44 篇 fractals
  • 43 篇 computational mo...
  • 38 篇 bottom mesons
  • 37 篇 reinforcement le...
  • 36 篇 laboratories
  • 34 篇 artificial intel...
  • 34 篇 branching fracti...
  • 34 篇 accuracy
  • 33 篇 federated learni...
  • 30 篇 object detection
  • 30 篇 image segmentati...

机构

  • 426 篇 department of ph...
  • 412 篇 horia hulubei na...
  • 408 篇 van swinderen in...
  • 407 篇 school of physic...
  • 404 篇 cavendish labora...
  • 401 篇 h.h. wills physi...
  • 400 篇 iccub universita...
  • 385 篇 university of ch...
  • 382 篇 yandex school of...
  • 376 篇 department of ph...
  • 368 篇 imperial college...
  • 354 篇 stfc rutherford ...
  • 353 篇 center for high ...
  • 346 篇 institute of par...
  • 326 篇 henryk niewodnic...
  • 315 篇 nikhef national ...
  • 303 篇 school of physic...
  • 302 篇 physik-institut ...
  • 300 篇 oliver lodge lab...
  • 293 篇 departamento de ...

作者

  • 252 篇 barter w.
  • 249 篇 bellee v.
  • 241 篇 beiter a.
  • 224 篇 bowcock t.j.v.
  • 224 篇 casse g.
  • 218 篇 blake t.
  • 216 篇 borsato m.
  • 216 篇 betancourt c.
  • 214 篇 bediaga i.
  • 213 篇 amato s.
  • 211 篇 boettcher t.
  • 210 篇 brundu d.
  • 210 篇 baryshnikov f.
  • 210 篇 braun s.
  • 207 篇 borisyak m.
  • 204 篇 bizzeti a.
  • 198 篇 bencivenni g.
  • 191 篇 back j.j.
  • 188 篇 bay a.
  • 174 篇 bursche a.

语言

  • 3,029 篇 英文
  • 529 篇 其他
  • 27 篇 中文
  • 3 篇 德文
  • 3 篇 法文
检索条件"机构=Department of Computer Engineering and Data mining laboratory"
3580 条 记 录,以下是591-600 订阅
排序:
GraphBEV: Towards Robust BEV Feature Alignment for Multi-Modal 3D Object Detection
arXiv
收藏 引用
arXiv 2024年
作者: Song, Ziying Yang, Lei Xu, Shaoqing Liu, Lin Xu, Dongyang Jia, Caiyan Jia, Feiyang Wang, Li School of Computer and Information Technology Beijing Jiaotong University China Beijing Key Lab of Traffic Data Analysis and Mining China School of Vehicle and Mobility Tsinghua University China Department of Electrome chanical Engineering University of Macau China School of Mechanical Engineering Beijing Institute of Technology China
Integrating LiDAR and camera information into Bird’s-Eye-View (BEV) representation has emerged as a crucial aspect of 3D object detection in autonomous driving. However, existing methods are susceptible to the inaccu... 详细信息
来源: 评论
Image Forgery Localization with State Space Models
arXiv
收藏 引用
arXiv 2024年
作者: Lou, Zijie Cao, Gang Guo, Kun Weng, Shaowei Yu, Lifang School of Computer and Cyber Sciences Communication University of China Beijing100024 China State Key Laboratory of Media Convergence and Communication Communication University of China Beijing100024 China Fujian Provincial Key Laboratory of Big Data Mining and Applications Fujian University of Technology Fuzhou350118 China Department of Information Engineering Beijing Institute of Graphic Communication Beijing100026 China
Pixel dependency modeling from tampered images is pivotal for image forgery localization. Current approaches predominantly rely on Convolutional Neural Networks (CNNs) or Transformer-based models, which often either l... 详细信息
来源: 评论
Progress in research on ultrasound radiomics for predicting the prognosis of breast cancer
收藏 引用
Cancer Innovation 2023年 第4期2卷 283-289页
作者: Xuantong Gong Xuefeng Liu Xiaozheng Xie Yong Wang Department of Ultrasound National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBijingChina State Key Laboratory of Virtual Reality Technology and Systems School of Computer Science and EngineeringBejjing Advanced Innovation Center for Big Data and Brain Computing(BDBC)Beihang UniversityBeijingChina School of Computer and Communication Engi neering.University of Science and Technology Beijing BeijingChina
Breast cancer is the most common malignant tumor and the leading cause of cancer-related deaths in women *** means of predicting the prognosis of breast cancer are very helpful in guiding treatment and improving patie... 详细信息
来源: 评论
One-Dimensional EEG Artifact Removal Network Based on Convolutional Neural Networks
Journal of Network Intelligence
收藏 引用
Journal of Network Intelligence 2024年 第1期9卷 142-159页
作者: Xiong, Jun Meng, Xiang-Long Chen, Zhao-Qi Wang, Chuan-Sheng Zhang, Fu-Quan Grau, Antoni Chen, Yang Huang, Jing-Wei School of Computer and Data Science Minjiang University Fuzhou University Town No. 200 Xiyuangong Road Fuzhou China College of Electronic Engineering Shandong University of Science and Technology No. 579 Qianwangang Road Huangdao District Qingdao China College of Computer and Big Data Fuzhou University Fuzhou University Town No. 2 Wulongjiang North Road Fuzhou China Department of Automatic Control Technical Polytechnic University of Catalonia Autonomous Region of Catalonia Barcelona Spain Digital Media Art Key Laboratory of Sichuan Province Sichuan Conservatory of Music Fuzhou Technology Innovation Center of intelligent Manufacturing information System Minjiang University Fuzhou University Town No. 200 Xiyuangong Road Fuzhou China Fujian Province University No. 1 Campus New Village Longjiang Street Fuqing China School of Mechanical and Automotive Engineering Fujian University of Technology No. 33 Xuefu South Road University New District Fuzhou China
The electroencephalogram (EEG) serves as a significant tool in the realms of clinical medicine, cerebral investigation, and neurological disorders research. However, the EEG records we obtain are often easily contamin... 详细信息
来源: 评论
Snapshot boosting: a fast ensemble framework for deep neural networks
收藏 引用
Science China(Information Sciences) 2020年 第1期63卷 77-88页
作者: Wentao ZHANG Jiawei JIANG Yingxia SHAO Bin CUI Center for Data Science Peking University National Engineering Laboratory for Big Data Analysis and Applications Department of Computer Science Beijing Key Lab of Intelligent Telecommunications Software and Multimedia School of Computer ScienceBeijing University of Posts and Telecommunications Key Lab of High Confidence Software Technologies Department of Computer SciencePeking University
Boosting has been proven to be effective in improving the generalization of machine learning models in many fields. It is capable of getting high-diversity base learners and getting an accurate ensemble model by combi... 详细信息
来源: 评论
RECURSIVE DISENTANGLEMENT NETWORK  10
RECURSIVE DISENTANGLEMENT NETWORK
收藏 引用
10th International Conference on Learning Representations, ICLR 2022
作者: Chen, Yixuan Shi, Yubin Li, Dongsheng Wang, Yujiang Dong, Mingzhi Zhao, Yingying Dick, Robert Lv, Qin Yang, Fan Shang, Li China and Shanghai Key Laboratory of Data Science School of Computer Science Fudan University Shanghai China Microsoft Research Asia Shanghai China Department of Computing Imperial College London London United Kingdom Department of Electrical Engineering and Computer Science University of Michigan Michigan United States Department of Computer Science University of Colorado Boulder Boulder United States School of Microelectronics Fudan University Shanghai China
Disentangled feature representation is essential for data-efficient learning. The feature space of deep models is inherently compositional. Existing β-VAE-based methods, which only apply disentanglement regularizatio... 详细信息
来源: 评论
Size-Invariance Matters: Rethinking Metrics and Losses for Imbalanced Multi-object Salient Object Detection  41
Size-Invariance Matters: Rethinking Metrics and Losses for I...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Li, Feiran Xu, Qianqian Bao, Shilong Yang, Zhiyong Cong, Runmin Cao, Xiaochun Huang, Qingming Institute of Information Engineering Chinese Academy of Sciences Beijing China School of Cyber Security University of Chinese Academy of Sciences Beijing China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing China School of Computer Science and Technology University of Chinese Academy of Sciences Beijing China Institute of Information Science Beijing Jiaotong University Beijing China School of Control Science and Engineering Shandong University Jinan China Key Laboratory of Machine Intelligence and System Control Ministry of Education Jinan China School of Cyber Science and Tech. Sun Yat-sen University Shenzhen Campus China Key Laboratory of Big Data Mining and Knowledge Management Chinese Academy of Sciences Beijing China
This paper explores the size-invariance of evaluation metrics in Salient Object Detection (SOD), especially when multiple targets of diverse sizes co-exist in the same image. We observe that current metrics are size-s... 详细信息
来源: 评论
Optimizing Vehicle Positioning via Multi-Model Image and Radio Frequency Fusion
Optimizing Vehicle Positioning via Multi-Model Image and Rad...
收藏 引用
IEEE International Conference on Communications (ICC)
作者: Ouwen Huan Mingzhe Chen Tao Luo Beijing Laboratory of Advanced Information Network Beijing University of Posts and Telecommunications Beijing China Department of Electrical and Computer Engineering Frost Institute for Data Science and Computing University of Miami Coral Gables FL USA
In this paper, a multi-modal vehicle positioning framework that jointly localizes vehicles with channel state information (CSI) and images is designed. In particular, we consider an outdoor scenario where each vehicle... 详细信息
来源: 评论
Aspect-Based Capsule Network With Mutual Attention for Recommendations
IEEE Transactions on Artificial Intelligence
收藏 引用
IEEE Transactions on Artificial Intelligence 2021年 第3期2卷 228-237页
作者: Yang, Zhenyu Wang, Xuesong Cheng, Yuhu Liu, GuoJing The School of Information and Control Engineering China University of Mining and Technology Xuzhou221116 China The Qilu University of Technology Shandong Academy of Sciences Software Integration Institute Jinan250353 China The Engineering Research Center of Intelligent Control for Underground Space Ministry of Education Xuzhou Key Laboratory of Artificial Intelligence and Big Data School of Information and Control Engineering China University of Mining and Technology Xuzhou221116 China The School of Computer Science and Technology Qilu University of Technology Jinan250353 China
Review text is a valuable source of information for recommendation systems and often contains rich semantics with user preferences and item attributes. Recently, mainstream recommendation approaches have been using de... 详细信息
来源: 评论
Taming "data-hungry" reinforcement learning? stability in continuous state-action spaces  24
Taming "data-hungry" reinforcement learning? stability in co...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Yaqi Duan Martin J. Wainwright Department of Technology Operations and Statistics Stern School of Business New York University New York NY Laboratory for Information and Decision Systems Statistics and Data Science Center and Department of Electrical Engineering and Computer Science and Department of Mathematics Massachusetts Institute of Technology Cambridge MA
We introduce a novel framework for analyzing reinforcement learning (RL) in continuous state-action spaces, and use it to prove fast rates of convergence in both off-line and on-line settings. Our analysis highlights ...
来源: 评论