Background & Need: The early detection of thoracic diseases and COVID-19 (coronavirus disease) significantly limits propagation and increases therapeutic outcomes. This article focuses on swiftly distinguishi...
详细信息
Background & Need: The early detection of thoracic diseases and COVID-19 (coronavirus disease) significantly limits propagation and increases therapeutic outcomes. This article focuses on swiftly distinguishing COVID-19 patients with 10 chronic thoracic illnesses from healthy examples. The death rates of COVID-19-confirmed patients are rising due to chronic thoracic illnesses. Method: To identify thoracic illnesses (Consolidation, Tuberculosis, Edema, Fibrosis, Hernia, Mass, Nodule, Plural-thickening, Pneumonia, Healthy) from X-ray images with COVID-19, we provide an ensemble-feature-fusion (FFT) deep learning (DL) model. 14,400 chest X-ray images (CXRI) of COVID-19 and other thoracic illnesses were obtained from five public sources and applied UNet-based data augmentation. High-quality images were intended to be provided under the CXR standard. To provide model parameters and feature extractors, four deep convolutional neural networks (CNNs) with a proprietary CapsNet as the backbone were employed. To generate the ensemble-fusion classifiers, we suggested five additional USweA (Unified Stacking weighted Averaging)-based comparative ensemble models as an alternative to depending solely on the findings of the single base model. Additionally, USweA enhanced the models' performance and reduced the base error-rate. USweA models were knowledgeable of the principles of multiple DL evaluations on distinct labels. Results: The results demonstrated that the feature-fusion strategy performed better than the standalone DL models in terms of overall classification effectiveness. According to study results, Thoracic-Net significantly improves COVID-19 context recognition for thoracic infections. It achieves superior results to existing CNNs, with a 99.75% accuracy, 97.89% precision, 98.69% recall, 98.27% F1-score, shallow 28 CXR zero-one loss, 99.27% ROC-AUC-score, 1.45% error rate, 0.9838 MCC, (0.98001, 0.99076) 95% CI, and 5.708 s to test individual CXR. This suggested USweA m
INTRODUCTION: Cloud computing, a still emerging technology, allows customers to pay for services based on usage. It provides internet-based services, whilst virtualization optimizes a PC’s available resources. OBJECT...
详细信息
In recent years, IoT has transformed personal environments by integrating diverse smart devices. This paper presents an advanced IoT architecture that optimizes network infrastructure, focusing on the adoption of MQTT...
详细信息
Network updates have become increasingly prevalent since the broad adoption of software-defined networks(SDNs)in data *** TCP designs,including cutting-edge TCP variants DCTCP,CUBIC,and BBR,however,are not resilient t...
详细信息
Network updates have become increasingly prevalent since the broad adoption of software-defined networks(SDNs)in data *** TCP designs,including cutting-edge TCP variants DCTCP,CUBIC,and BBR,however,are not resilient to network updates that provoke flow *** this paper,we first demonstrate that popular TCP implementations perform inadequately in the presence of frequent and inconsistent network updates,because inconsistent and frequent network updates result in out-of-order packets and packet drops induced via transitory congestion and lead to serious performance *** look into the causes and propose a network update-friendly TCP(NUFTCP),which is an extension of the DCTCP variant,as a *** are used to assess the proposed *** findings reveal that NUFTCP can more effectively manage the problems of out-of-order packets and packet drops triggered in network updates,and it outperforms DCTCP considerably.
Advanced analytical techniques and sophisticated decision-making strategies are imperative for handling extensive volumes of data. As the quantity, diversity, and speed of data increase, there is a growing lack of con...
详细信息
The extensive utilization of the Internet in everyday life can be attributed to the substantial accessibility of online services and the growing significance of the data transmitted via the ***,this development has ex...
详细信息
The extensive utilization of the Internet in everyday life can be attributed to the substantial accessibility of online services and the growing significance of the data transmitted via the ***,this development has expanded the potential targets that hackers might *** adequate safeguards,data transmitted on the internet is significantly more susceptible to unauthorized access,theft,or *** identification of unauthorised access attempts is a critical component of cybersecurity as it aids in the detection and prevention of malicious *** research paper introduces a novel intrusion detection framework that utilizes Recurrent Neural Networks(RNN)integrated with Long Short-Term Memory(LSTM)*** proposed model can identify various types of cyberattacks,including conventional and distinctive *** networks,a specific kind of feedforward neural networks,possess an intrinsic memory *** Neural Networks(RNNs)incorporating Long Short-Term Memory(LSTM)mechanisms have demonstrated greater capabilities in retaining and utilizing data dependencies over extended *** such as data types,training duration,accuracy,number of false positives,and number of false negatives are among the parameters employed to assess the effectiveness of these models in identifying both common and unusual *** are utilised in conjunction with LSTM to support human analysts in identifying possible intrusion events,hence enhancing their decision-making capabilities.A potential solution to address the limitations of Shallow learning is the introduction of the Eccentric Intrusion Detection *** model utilises Recurrent Neural Networks,specifically exploiting LSTM *** proposed model achieves detection accuracy(99.5%),generalisation(99%),and false-positive rate(0.72%),the parameters findings reveal that it is superior to state-of-the-art techniques.
With the increasing popularity of smart portable electronic gadgets, voice-based online person verification systems have become prevalent. However, these systems are susceptible to attacks where illegitimate individua...
详细信息
With the increasing popularity of smart portable electronic gadgets, voice-based online person verification systems have become prevalent. However, these systems are susceptible to attacks where illegitimate individuals exploit the recorded voices of legitimate users, leading to false confirmations—spoofing attacks. To overcome this limitation, this article presents an innovative solution by combining speech and online handwritten signatures to mitigate the risks associated with spoofing attacks in voice-based authentication systems because a person has to be present in front of the system to produce an online handwritten signature. To accomplish this objective, this work proposes a novel bidirectional Legendre memory unit (BLMU), a type of recurrent neural network (RNN), for person authentication (verification) and recognition. The Legendre memory unit (LMU) is an innovative memory cell for RNNs that efficiently retains temporal/non-temporal sequential information over a long period with minimal resources. It achieves information orthogonalization by solving coupled ordinary differential equations (ODEs) and leveraging Legendre polynomials, ensuring effective data representation. The proposed framework for person authentication and recognition comprises seven convolution layers, four BLMU layers, two dense layers, and one output layer. The performance of the proposed BLMU-based deep learning framework has been evaluated on a self-generated/private dataset of combined feature matrix of voice signals and online handwritten signatures in the Devanagari script. To assess performance, experiments have also been conducted using various RNN architectures, such as LSTM, BLSTM, and ordinary differential equation recurrent neural network (ODE-RNN), to have a performance comparison with the proposed BLMU-based deep learning (DL) framework. The results demonstrate the superiority of the proposed BLMU-based DL framework in enhancing the accuracy of person verification systems,
The outbreak of COVID-19 (also known as Coronavirus) has put the entire world at risk. The disease first appears in Wuhan, China, and later spread to other countries, taking a form of a pandemic. In this paper, we try...
详细信息
The use of machine learning models in intrusion detection systems (IDSs) takes more time to build the model with many features and degrade the performance. The present paper proposes an ensemble of filter feature sele...
详细信息
Fake news, Fake certification, and Plagiarism are the most common issues arising these days. During this COVID-19 situation, there are a lot of rumors and fake news spreading and some of us are using fake certificatio...
详细信息
暂无评论