In today's digital landscape, web applications have become indispensable tools for businesses, facilitating access to vital data and services. However, this ubiquity also exposes them to a myriad of cyber threats,...
详细信息
Web Navigation Prediction (WNP) has been popularly used for finding future probable web pages. Obtaining relevant information from a large web is challenging, as its size is growing with every second. Web data may con...
详细信息
Ultra processed foods have permeated modern diets, raising concerns about their health implications. This study introduces a pioneering approach utilizing ML algorithms notably Random Forest and XGBoost, to analyze pa...
详细信息
An Intrusion Detection System monitors the network for any malicious attacks. It is an ideal tool for protecting extensive business networks from any kind of attack. In this paper, an Intrusion Detection System using ...
详细信息
Non-Orthogonal Multiple Access(NOMA)has already proven to be an effective multiple access scheme for5th Generation(5G)wireless *** provides improved performance in terms of system throughput,spectral efficiency,fairne...
详细信息
Non-Orthogonal Multiple Access(NOMA)has already proven to be an effective multiple access scheme for5th Generation(5G)wireless *** provides improved performance in terms of system throughput,spectral efficiency,fairness,and energy efficiency(EE).However,in conventional NOMA networks,performance degradation still exists because of the stochastic behavior of wireless *** combat this challenge,the concept of Intelligent Reflecting Surface(IRS)has risen to prominence as a low-cost intelligent solution for Beyond 5G(B5G)*** this paper,a modeling primer based on the integration of these two cutting-edge technologies,i.e.,IRS and NOMA,for B5G wireless networks is *** in-depth comparative analysis of IRS-assisted Power Domain(PD)-NOMA networks is provided through 3-fold ***,a primer is presented on the system architecture of IRS-enabled multiple-configuration PD-NOMA systems,and parallels are drawn with conventional network configurations,i.e.,conventional NOMA,Orthogonal Multiple Access(OMA),and IRS-assisted OMA *** by this,a comparative analysis of these network configurations is showcased in terms of significant performance metrics,namely,individual users'achievable rate,sum rate,ergodic rate,EE,and outage ***,for multi-antenna IRS-enabled NOMA networks,we exploit the active Beamforming(BF)technique by employing a greedy algorithm using a state-of-the-art branch-reduceand-bound(BRB)*** optimality of the BRB algorithm is presented by comparing it with benchmark BF techniques,i.e.,minimum-mean-square-error,zero-forcing-BF,and ***,we present an outlook on future envisioned NOMA networks,aided by IRSs,i.e.,with a variety of potential applications for 6G wireless *** work presents a generic performance assessment toolkit for wireless networks,focusing on IRS-assisted NOMA *** comparative analysis provides a solid foundation for the dev
Automatic Speech Recognition systems that convert language into written text have greatly transformed human–machine interaction. Although these systems have achieved results, in languages building accurate and reliab...
详细信息
In numerous real-world healthcare applications,handling incomplete medical data poses significant challenges for missing value imputation and subsequent clustering or classification *** approaches often rely on statis...
详细信息
In numerous real-world healthcare applications,handling incomplete medical data poses significant challenges for missing value imputation and subsequent clustering or classification *** approaches often rely on statistical methods for imputation,which may yield suboptimal results and be computationally *** paper aims to integrate imputation and clustering techniques to enhance the classification of incomplete medical data with improved *** classification methods are ill-suited for incomplete medical *** enhance efficiency without compromising accuracy,this paper introduces a novel approach that combines imputation and clustering for the classification of incomplete ***,the linear interpolation imputation method alongside an iterative Fuzzy c-means clustering method is applied and followed by a classification *** effectiveness of the proposed approach is evaluated using multiple performance metrics,including accuracy,precision,specificity,and *** encouraging results demonstrate that our proposed method surpasses classical approaches across various performance criteria.
Multi-label Text Classification (MTC) is a challenging task in Natural Language Processing (NLP). The goal of the MTC task is to label a document with a set of labels. By incorporating various term weighting schemes i...
详细信息
Multi-label Text Classification (MTC) is a challenging task in Natural Language Processing (NLP). The goal of the MTC task is to label a document with a set of labels. By incorporating various term weighting schemes in MTC, high dimensional feature space has been generated;due to that, multi-label learning algorithms face substantial problems in performing MTC tasks. To deal with these issues, Feature Selection (FS) approaches are effective solutions. This paper proposes a Lightweight Term-weighting FS (LwTwFS) approach based on a modified Chi-square (CHI) filter-based FS method to deal with this issue. The modified CHI approach works for Inter-Class Concentration (ICC) and Intra-Class Dispersion (ICD), and its strength has been increased by adding positive and negative correlations. A novel modified equation has been introduced to distribute the features among the categories (i.e., here, multi-label) in the corpus. The proposed modified CHI-based FS approach works on the term weighting-based Feature Extraction (FE) approach. Multi-Layer Perceptron (MLP) has been used in the classification phase due to the adaptive learning property, which refers to learning how to do tasks based on data provided during training or prior experience. We have used two publicly available multi-label corpora for experimental verification: the Arxiv Academic Paper Dataset (AAPD) and the Reuters Corpus Volume I (RCVI-V2). According to the results, in terms of performance, the LwTwFS methodology combined with the MLP classifier surpasses other combinations in terms of Jaccard Score (JS), Hamming Loss (HL), Ranking Loss (RL), Precision (Pr), Recall (Re), and F-micro and F-macro. For the AAPD corpus, the LwTwFS method achieves the best JS, HL, RL, Pr, F-micro, and F-macro values, which are 0.9636, 0.0121, 0.0303, 0.9636, 0.9882, and 0.9894. For the RCVI-V2 corpus, the LwTwFS method achieves the best JS, Pr, Re, F-micro, and F-macro values of 1.0000, and HL, RL values of 0.0000. Empirical res
The wave of computer automation in business has revolutionised the way companies and employees interact with their customers and each other. Robotic process automation (RPA) not only mimics human actions involving com...
详细信息
Sentiment analysis is an analytical subfield of Natural Language Processing (NLP) to determine opinion or emotion associated with the body of the text. The requirement for social media sentiment analysis has exception...
详细信息
暂无评论