作者:
Perera, AndreaFernando, PumuduAndreaPera
Department of Computer Science Informatics Institute of Technology Colombo 06 Sri Lanka Pumudu Fernando
Department of Computer Science Informatics Institute of Technology Colombo 06 Sri Lanka
The use of digital and social media is growing every day as technology advances. People in the twenty-first century are growing up in a social media and internet-enabled society. Digital media offers a lot of opportun...
详细信息
In the area of data hiding and information security, the greater need is to ensure high embedding capacity of the stego media without hampering the visual quality while ensuring the tightest possible security. Now, it...
详细信息
In recent times, Voice Controlled Devices (VCD) have become an important part of our life. However, these devices are vulnerable to replay attacks. Hence, to address the issue, this paper proposes an Automatic Speaker...
详细信息
In this work, the SHA-256 mapper of the blockchain has been utilized to secure medical data from brute-force attacks. The uniform distribution and lower correlation of the encrypted data are achieved using the multi-c...
详细信息
Pesticides have become more necessary in modern agricultural ***,these pesticides have an unforeseeable long-term impact on people's wellbeing as well as the *** to a shortage of basic pesticide exposure awareness...
详细信息
Pesticides have become more necessary in modern agricultural ***,these pesticides have an unforeseeable long-term impact on people's wellbeing as well as the *** to a shortage of basic pesticide exposure awareness,farmers typically utilize pesticides extremely close to *** residues within foods,particularly fruits as well as veggies,are a significant issue among farmers,merchants,and particularly *** residual concentrations were far lower than these maximal allowable limits,with only a few surpassing the restrictions for such pesticides in *** is an obligation to provide a warning about this amount of pesticide use in *** technologies failed to forecast the large number of pesticides that were dangerous to people,necessitating the development of improved detection and early warning systems.A novel methodology for verifying the status and evaluating the level of pesticides in regularly consumed veggies as well as fruits has been identified,named as the Hybrid Chronic Multi-Residual Framework(HCMF),in which the harmful level of used pesticide residues has been predicted for contamination in agro products using Q-Learning based Recurrent Neural Network and the predicted contamination levels have been analyzed using Complex Event Processing(CEP)by processing given spatial and sequential *** analysis results are used to minimize and effectively use pesticides in the agricultural field and also ensure the safety of farmers and ***,the technique is carried out in a Python environment,with the results showing that the proposed model has a 98.57%accuracy and a training loss of 0.30.
In telemedicine applications, it is crucial to ensure the authentication, confidentiality, and privacy of medical data due to its sensitive nature and the importance of the patient information it contains. Communicati...
详细信息
In telemedicine applications, it is crucial to ensure the authentication, confidentiality, and privacy of medical data due to its sensitive nature and the importance of the patient information it contains. Communication through open networks is insecure and has many vulnerabilities, making it susceptible to unauthorized access and misuse. Encryption models are used to secure medical data from unauthorized access. In this work, we propose a bit-level encryption model having three phases: preprocessing, confusion, and diffusion. This model is designed for different types of medical data including patient information, clinical data, medical signals, and images of different modalities. Also, the proposed model is effectively implemented for grayscale and color images with varying aspect ratios. Preprocessing has been applied based on the type of medical data. A random permutation has been used to scramble the data values to remove the correlation, and multilevel chaotic maps are fused with the cyclic redundancy check method. A circular shift is used in the diffusion phase to increase randomness and security, providing protection against potential attacks. The CRC method is further used at the receiver side for error detection. The performance efficiency of the proposed encryption model is proved in terms of histogram analysis, information entropy, correlation analysis, signal-to-noise ratio, peak signal-to-noise ratio, number of pixels changing rate, and unified average changing intensity. The proposed bit-level encryption model therefore achieves information entropy values ranging from 7.9669 to 8.000, which is close to the desired value of 8. Correlation coefficient values of the encrypted data approach to zero or are negative, indicating minimal correlation in encrypted data. Resistance against differential attacks is demonstrated by NPCR and UACI values exceeding 0.9960 and 0.3340, respectively. The key space of the proposed model is 1096, which is substantially mor
Desertification greatly affects land deterioration, farming efficiency, economic growth, and health, especially in Gulf nations. Climate change has worsened desertification, making developmental issues in the area eve...
详细信息
Desertification greatly affects land deterioration, farming efficiency, economic growth, and health, especially in Gulf nations. Climate change has worsened desertification, making developmental issues in the area even more difficult. This research presents an enhanced framework utilizing the Internet of Things (IoT) for ongoing monitoring, data gathering, and analysis to evaluate desertification patterns. The framework utilizes Bayesian Belief Networks (BBN) to categorize IoT data, while a low-latency processing method on edge computing platforms enables effective detection of desertification trends. The classified data is subsequently analyzed using an Artificial Neural Network (ANN) optimized with a Genetic Algorithm (GA) for forecasting decisions. Using cloud computing infrastructure, the ANN-GA model examines intricate data connections to forecast desertification risk elements. Moreover, the Autoregressive Integrated Moving Average (ARIMA) model is employed to predict desertification over varied time intervals. Experimental simulations illustrate the effectiveness of the suggested framework, attaining enhanced performance in essential metrics: Temporal Delay (103.68 s), Classification Efficacy—Sensitivity (96.44 %), Precision (95.56 %), Specificity (96.97 %), and F-Measure (96.69 %)—Predictive Efficiency—Accuracy (97.76 %) and Root Mean Square Error (RMSE) (1.95 %)—along with Reliability (93.73 %) and Stability (75 %). The results of classification effectiveness and prediction performance emphasize the framework's ability to detect high-risk zones and predict the severity of desertification. This innovative method improves the comprehension of desertification processes and encourages sustainable land management practices, reducing the socio-economic impacts of desertification and bolstering at-risk ecosystems. The results of the study hold considerable importance for enhancing regional efforts in combating desertification, ensuring food security, and formulatin
The patient health prediction system is the most critical study in medical research. Several prediction models exist to predict the patient's health condition. However, a relevant result was not attained because o...
详细信息
Nowadays, trust management plays a significant role in different applications like commercial applications, Internet of Things (IoT) based applications, social networking applications, cloud computing-based applicatio...
详细信息
Breast cancer is one of the deadly diseases prevailing in *** detection and diagnosis might prevent the death *** diagnosis of breast cancer remains a significant challenge,and early diagnosis is essential to avoid th...
详细信息
Breast cancer is one of the deadly diseases prevailing in *** detection and diagnosis might prevent the death *** diagnosis of breast cancer remains a significant challenge,and early diagnosis is essential to avoid the most severe manifestations of the *** existing systems have computational complexity and classification accuracy problems over various breast cancer *** order to overcome the above-mentioned issues,this work introduces an efficient classification and segmentation ***,there is a requirement for developing a fully automatic methodology for screening the cancer *** paper develops a fully automated method for breast cancer detection and segmenta-tion utilizing Adaptive Neuro Fuzzy Inference System(ANFIS)classification *** proposed technique comprises preprocessing,feature extraction,classifications,and segmentation ***,the wavelet-based enhancement method has been employed as the preprocessing *** texture and statistical features have been extracted from the enhanced ***,the ANFIS classification algorithm is used to classify the mammogram image into normal,benign,and malignant ***,morphological processing is performed on malignant mam-mogram images to segment cancer *** analysis and comparisons are made with conventional *** experimental result proves that the pro-posed ANFIS algorithm provides better classification performance in terms of higher accuracy than the existing algorithms.
暂无评论