Aim: Recent advances in Artificial Intelligence (AI) and the addition of Deep Learning (DL) have made it possible to analyse both real-time and historical data from the Internet of Things (IoT). Recently, IoT technolo...
详细信息
Today, machine learning is used in a broad variety of applications. Convolution neural networks (CNN), in particular, are widely used to analyze visual data. The fashion industry is catching up to the growing usage of...
详细信息
The Wireless Sensor Network(WSN)is a network that is constructed in regions that are inaccessible to human *** widespread deployment of wireless micro sensors will make it possible to conduct accurate environmental mo...
详细信息
The Wireless Sensor Network(WSN)is a network that is constructed in regions that are inaccessible to human *** widespread deployment of wireless micro sensors will make it possible to conduct accurate environmental monitoring for a use in both civil and military *** make use of these data to monitor and keep track of the physical data of the surrounding environment in order to ensure the sustainability of the *** data have to be picked up by the sensor,and then sent to the sink node where they may be *** nodes of the WSNs are powered by batteries,therefore they eventually run out of *** energy restriction has an effect on the network life span and environmental *** objective of this study is to further improve the Engroove Leach(EL)protocol’s energy efficiency so that the network can operate for a very long time while consuming the least amount of *** lifespan of WSNs is being extended often using clustering and routing *** Meta Inspired Hawks Fragment Optimization(MIHFO)system,which is based on passive clustering,is used in this study to do *** cluster head is chosen based on the nodes’residual energy,distance to neighbors,distance to base station,node degree,and node *** on distance,residual energy,and node degree,an algorithm known as Heuristic Wing Antfly Optimization(HWAFO)selects the optimum path between the cluster head and Base Station(BS).They examine the number of nodes that are active,their energy consumption,and the number of data packets that the BS *** overall experimentation is carried out under the MATLAB *** the analysis,it has been discovered that the suggested approach yields noticeably superior outcomes in terms of throughput,packet delivery and drop ratio,and average energy consumption.
Within the domain of image encryption, an intrinsic trade-off emerges between computational complexity and the integrity of data transmission security. Protecting digital images often requires extensive mathematical o...
详细信息
Sadri is the most widely used language of the Chotanagpur Plateau region of India. This is primarily a spoken language and developing an automatic speech recognition (ASR) system in Sadri is extremely important. When ...
详细信息
Real-time systems experience many safety and performance issues at run time due to different uncertainties in the environment. Systems are now becoming highly interactive and must be able to execute in a changing envi...
详细信息
Real-time systems experience many safety and performance issues at run time due to different uncertainties in the environment. Systems are now becoming highly interactive and must be able to execute in a changing environment without experiencing any failure. A real-time system can have multiple modes of operation such as safety and performance. The system can satisfy its safety and performance requirements by switching between the modes at run time. It is essential for the designers to ensure that a multi-mode real-time system operates in the expected mode at run time. In this paper, we present a verification model that identifies the expected mode at run time and checks whether the multi-mode real-time system is operating in the correct mode or not. To determine the expected mode, we present a monitoring module that checks the environment of the system, identifies different real-world occurrences as events, determines their properties and creates an event-driven dataset for failure analysis. The dataset consumes less memory in comparison to the raw input data obtained from the monitored environment. The event-driven dataset also facilitates onboard decision-making because the dataset allows the system to perform a safety analysis by determining the probability of failure in each environmental situations. We use the probability of failure of the system to determine the safety mode in different environmental situations. To demonstrate the applicability of our proposed scheme, we design and implement a real-time traffic monitoring system that has two modes: safety, and performance. The experimental analysis of our work shows that the verification model can identify the expected operating mode at run time based on the safety (probability of failure) and performance (usage) requirements of the system as well as allows the system to operate in performance mode (in 3295 out of 3421 time intervals) and safety mode (in 126 out of 3421 time intervals). The experimental resul
The surrounding environmental and climatic conditions have a significant impact on the utilisation of ecosystem services for recreational purposes. Climate change poses a threat to future natural leisure opportunities...
详细信息
Voice biometric authentication has gained significant attention in recent years due to its non-intrusive and user-friendly nature. In this research paper, we present a comprehensive study on the effectiveness of three...
详细信息
Automatic skin lesion subtyping is a crucial step for diagnosing and treating skin cancer and acts as a first level diagnostic aid for medical experts. Although, in general, deep learning is very effective in image pr...
详细信息
Automatic skin lesion subtyping is a crucial step for diagnosing and treating skin cancer and acts as a first level diagnostic aid for medical experts. Although, in general, deep learning is very effective in image processing tasks, there are notable areas of the processing pipeline in the dermoscopic image regime that can benefit from refinement. Our work identifies two such areas for improvement. First, most benchmark dermoscopic datasets for skin cancers and lesions are highly imbalanced due to the relative rarity and commonality in the occurrence of specific lesion types. Deep learning methods tend to exhibit biased performance in favor of the majority classes with such datasets, leading to poor generalization. Second, dermoscopic images can be associated with irrelevant information in the form of skin color, hair, veins, etc.;hence, limiting the information available to a neural network by retaining only relevant portions of an input image has been successful in prompting the network towards learning task-relevant features and thereby improving its performance. Hence, this research work augments the skin lesion characterization pipeline in the following ways. First, it balances the dataset to overcome sample size biases. Two balancing methods, synthetic minority oversampling TEchnique (SMOTE) and Reweighting, are applied, compared, and analyzed. Second, a lesion segmentation stage is introduced before classification, in addition to a preprocessing stage, to retain only the region of interest. A baseline segmentation approach based on Bi-Directional ConvLSTM U-Net is improved using conditional adversarial training for enhanced segmentation performance. Finally, the classification stage is implemented using EfficientNets, where the B2 variant is used to benchmark and choose between the balancing and segmentation techniques, and the architecture is then scaled through to B7 to analyze the performance boost in lesion classification. From these experiments, we find
Handwritten character segmentation plays a pivotal role in the performance of Optical Character Recognition (OCR) systems. This paper introduces an innovative approach to enhancing segmentation accuracy using Region-B...
详细信息
暂无评论