Effective student management is crucial for fostering productive learning environments. This study presents a hybrid framework integrating machine learning (ML) techniques with rough set theory to enhance student mana...
详细信息
This research presents an analysis of smart grid units to enhance connected units’security during data *** major advantage of the proposed method is that the system model encompasses multiple aspects such as network ...
详细信息
This research presents an analysis of smart grid units to enhance connected units’security during data *** major advantage of the proposed method is that the system model encompasses multiple aspects such as network flow monitoring,data expansion,control association,throughput,and *** addition,all the above-mentioned aspects are carried out with neural networks and adaptive optimizations to enhance the operation of smart grid ***,the quantitative analysis of the optimization algorithm is discussed concerning two case studies,thereby achieving early convergence at reduced *** suggested method ensures that each communication unit has its own distinct channels,maximizing the possibility of accurate *** results in the provision of only the original data values,hence enhancing *** power and line values are individually observed to establish control in smart grid-connected channels,even in the presence of adaptive settings.A comparison analysis is conducted to showcase the results,using simulation studies involving four scenarios and two case *** proposed method exhibits reduced complexity,resulting in a throughput gain of over 90%.
The utilization of Data-Driven Machine Learning (DDML) models in the healthcare sector poses unique challenges due to the crucial nature of clinical decision-making and its impact on patient outcomes. A primary concer...
详细信息
Mining quantitative association rules involves identifying the relationships between items based on their purchased quantities from a transaction database. In general, items with varying quantities are treated as dist...
详细信息
Changes in the Atmospheric Electric Field Signal (AEFS) are highly correlated with weather changes, especially with thunderstorm activities. However, little attention has been paid to the ambiguous weather information...
详细信息
Mango farming significantly contributes to the economy,particularly in developing ***,mango trees are susceptible to various diseases caused by fungi,viruses,and bacteria,and diagnosing these diseases at an early stag...
详细信息
Mango farming significantly contributes to the economy,particularly in developing ***,mango trees are susceptible to various diseases caused by fungi,viruses,and bacteria,and diagnosing these diseases at an early stage is crucial to prevent their spread,which can lead to substantial *** development of deep learning models for detecting crop diseases is an active area of research in smart *** study focuses on mango plant diseases and employs the ConvNeXt and Vision Transformer(ViT)*** datasets were *** first,MangoLeafBD,contains data for mango leaf diseases such as anthracnose,bacterial canker,gall midge,and powdery *** second,SenMangoFruitDDS,includes data for mango fruit diseases such as Alternaria,Anthracnose,Black Mould Rot,Healthy,and Stem and *** datasets were obtained from publicly available *** proposed model achieved an accuracy of 99.87%on the MangoLeafBD dataset and 98.40%on the MangoFruitDDS *** results demonstrate that ConvNeXt and ViT models can effectively diagnose mango diseases,enabling farmers to identify these conditions more *** system contributes to increased mango production and minimizes economic losses by reducing the time and effort needed for manual ***,the proposed system is integrated into a mobile application that utilizes the model as a backend to detect mango diseases instantly.
The primary objective of this research is to develop and promote efficient and secure de-identification technology to address the application of sensitive personal information in healthcare big data. Considering the o...
详细信息
Indoor Navigation System (INS) supports seamless movement of objects within confined spaces in smart environments. In this paper, a novel INS that relies on ESP32-based Received Signal Strength Indication (RSSI) measu...
详细信息
Intrusion attempts against Internet of Things(IoT)devices have significantly increased in the last few *** devices are now easy targets for hackers because of their built-in security *** a Self-Organizing Map(SOM)hybr...
详细信息
Intrusion attempts against Internet of Things(IoT)devices have significantly increased in the last few *** devices are now easy targets for hackers because of their built-in security *** a Self-Organizing Map(SOM)hybrid anomaly detection system for dimensionality reduction with the inherited nature of clustering and Extreme Gradient Boosting(XGBoost)for multi-class classification can improve network traffic intrusion *** proposed model is evaluated on the NSL-KDD *** hybrid approach outperforms the baseline line models,Multilayer perceptron model,and SOM-KNN(k-nearest neighbors)model in precision,recall,and F1-score,highlighting the proposed approach’s scalability,potential,adaptability,and real-world ***,this paper proposes a highly efficient deployment strategy for resource-constrained network *** results reveal that Precision,Recall,and F1-scores rise 10%-30% for the benign,probing,and Denial of Service(DoS)*** particular,the DoS,probe,and benign classes improved their F1-scores by 7.91%,32.62%,and 12.45%,respectively.
Music recommendation systems are essential due to the vast amount of music available on streaming platforms,which can overwhelm users trying to find new tracks that match their *** systems analyze users’emotional res...
详细信息
Music recommendation systems are essential due to the vast amount of music available on streaming platforms,which can overwhelm users trying to find new tracks that match their *** systems analyze users’emotional responses,listening habits,and personal preferences to provide personalized suggestions.A significant challenge they face is the“cold start”problem,where new users have no past interactions to guide *** improve user experience,these systems aimto effectively recommendmusic even to such users by considering their listening behavior and music *** paper introduces a novel music recommendation system that combines order clustering and a convolutional neural network,utilizing user comments and rankings as ***,the system organizes users into clusters based on semantic similarity,followed by the utilization of their rating similarities as input for the convolutional neural *** network then predicts ratings for unreviewed music by ***,the system analyses user music listening behaviour and music *** popularity can help to address cold start users as ***,the proposed method recommends unreviewed music based on predicted high rankings and popularity,taking into account each user’s music listening *** proposed method combines predicted high rankings and popularity by first selecting popular unreviewedmusic that themodel predicts to have the highest ratings for each *** these,the most popular tracks are prioritized,defined by metrics such as frequency of listening across *** number of recommended tracks is aligned with each user’s typical listening *** experimental findings demonstrate that the new method outperformed other classification techniques and prior recommendation systems,yielding a mean absolute error(MAE)rate and rootmean square error(RMSE)rate of approximately 0.0017,a hit rate of 82.45%,an average normalized discounted cumulative gain
暂无评论