The optimization of civil engineering structures is critical for enhancing structural performance and material efficiency in engineering *** optimization approaches seek to determine the optimal design,by considering ...
详细信息
The optimization of civil engineering structures is critical for enhancing structural performance and material efficiency in engineering *** optimization approaches seek to determine the optimal design,by considering material performance,cost,and structural *** design approaches aim to reduce the built environment’s energy use and carbon *** comprehensive review examines optimization techniques,including size,shape,topology,and multi-objective approaches,by integrating these *** trends and advancements that contribute to developing more efficient,cost-effective,and reliable structural designs were *** review also discusses emerging technologies,such as machine learning applications with different optimization *** of truss,frame,tensegrity,reinforced concrete,origami,pantographic,and adaptive structures are covered and *** techniques are explained,including metaheuristics,genetic algorithm,particle swarm,ant-colony,harmony search algorithm,and their applications with mentioned structure *** and non-linear structures,including geometric and material nonlinearity,are *** role of optimization in active structures,structural design,seismic design,form-finding,and structural control is taken into account,and the most recent techniques and advancements are mentioned.
The inverse kinematics problem in serially manipulated upper limb rehabilitation robots implies the usage of the end-effector position to obtain the joint rotation angles. In contrast to the forward kinematics, there ...
详细信息
A stochastic-gradient-based interior-point algorithm for minimizing a continuously differentiable objective function (that may be nonconvex) subject to bound constraints is presented, analyzed, and demonstrated throug...
详细信息
Emotion recognition from EEG (electroencephalogram) signals is crucial in mental health diagnostics and human-computer interaction but is often hindered by high dimensionality, noise, and complex temporal dependencies...
详细信息
Emotion recognition from EEG (electroencephalogram) signals is crucial in mental health diagnostics and human-computer interaction but is often hindered by high dimensionality, noise, and complex temporal dependencies in the data. This paper presents a novel approach that integrates transformer models, attention mechanisms, and transfer learning to enhance emotion recognition accuracy from EEG signals. The proposed methodology consists of two phases: Attention Enhanced Base Model Development (AE-BMD) and Cross-Dataset Fine Tuning Adaptation (CD-FTA). In the AE-BMD phase, the base model is developed and trained on the SEED-IV dataset (15 participants, 62 EEG channels), achieving an accuracy of 84%, with an average precision of 84.75%, recall of 84% and F1-score of 84%. This phase employs optimized feature extraction from key EEG frequency bands (Delta, Theta, Alpha, Beta, Gamma) using techniques such as MFCC, GFCC, power spectral density, and Hjorth parameters. A transformer encoder with integrated spectral and temporal attention mechanisms captures intricate patterns and long-range dependencies within the EEG signals. In the CD-FTA phase, the model undergoes fine-tuning on the SEED-V dataset (20 participants, 62 channels) leading to an improved accuracy of 90%, with an average precision of 90.6%, recall of 90.6%, and F1-score of 90.6%. The model’s generalization is further validated on the MPED dataset (23 participants, 62 channels, seven emotion classes), achieving 79%, with an average precision of 79.3%, recall of 79.3% and F1-score of 79.1% across diverse emotional states. This cross-dataset adaptation leverages transfer learning to enhance the model’s generalization across different emotional states and EEG datasets. Experimental results show that the proposed approach outperforms traditional methods, achieving superior accuracy and robustness in emotion recognition tasks. This work advances emotion recognition systems by addressing challenges in EEG signal proc
Emotions are a vital semantic part of human correspondence. Emotions are significant for human correspondence as well as basic for human–computer cooperation. Viable correspondence between people is possibly achieved...
详细信息
Human posture recognition (HPR) has garnered growing interest given the possibility of its use in various applications, including healthcare and sports fitness. Interestingly, achieving accurate pose recognition on mo...
详细信息
The high mobility of uncrewed aerial vehicles (UAVs) has led to their usage in various computer vision applications, notably in intelligent traffic surveillance, where it enhances productivity and simplifies the proce...
详细信息
Underwater wireless sensor networks(UWSNs)rely on data aggregation to streamline routing operations by merging information at intermediate nodes before transmitting it to the ***,many existing data aggregation techniq...
详细信息
Underwater wireless sensor networks(UWSNs)rely on data aggregation to streamline routing operations by merging information at intermediate nodes before transmitting it to the ***,many existing data aggregation techniques are designed exclusively for static networks and fail to reflect the dynamic nature of underwater ***,conventional multi-hop data gathering techniques often lead to energy depletion problems near the sink,commonly known as the energy hole ***,cluster-based aggregation methods face significant challenges such as cluster head(CH)failures and collisions within clusters that degrade overall network *** address these limitations,this paper introduces an innovative framework,the Cluster-based Data Aggregation using Fuzzy Decision Model(CDAFDM),tailored for mobile *** proposed method has four main phases:clustering,CH selection,data aggregation,and *** CH selection,a fuzzy decision model is utilized to ensure efficient cluster head selection based on parameters such as residual energy,distance to the sink,and data delivery likelihood,enhancing network stability and energy *** the aggregation phase,CHs transmit a single,consolidated set of non-redundant data to the base station(BS),thereby reducing data duplication and saving *** adapt to the changing network topology,the re-clustering phase periodically updates cluster formations and reselects *** results show that CDAFDM outperforms current protocols such as CAPTAIN(Collection Algorithm for underwater oPTical-AcoustIc sensor Networks),EDDG(Event-Driven Data Gathering),and DCBMEC(Data Collection Based on Mobile Edge Computing)with a packet delivery ratio increase of up to 4%,an energy consumption reduction of 18%,and a data collection latency reduction of 52%.These findings highlight the framework’s potential for reliable and energy-efficient data aggregation mobile UWSNs.
Conventionally, a virtual synchronous generator (VSG) is designed for islanded mode (IM) operation to meet specific operational requirements such as the rate of change of frequency (RoCoF). However, the operation of V...
详细信息
This paper analyzes whether Android apps may outsource computational activities to cloud servers. Due to the complexity of mobile apps, shifting computing operations to the cloud has become popular to improve performa...
详细信息
暂无评论