Federated Learning (FL), an emerging distributed Artificial Intelligence (AI) technique, is susceptible to jamming attacks during the wireless transmission of trained models. In this letter, we introduce a jamming att...
详细信息
The current large-scale Internet of Things(IoT)networks typically generate high-velocity network traffic *** use IoT devices to create botnets and launch attacks,such as DDoS,Spamming,Cryptocurrency mining,Phishing,**...
详细信息
The current large-scale Internet of Things(IoT)networks typically generate high-velocity network traffic *** use IoT devices to create botnets and launch attacks,such as DDoS,Spamming,Cryptocurrency mining,Phishing,*** service providers of large-scale IoT networks need to set up a data pipeline to collect the vast network traffic data from the IoT devices,store it,analyze it,and report the malicious IoT devices and types of ***,the attacks originating from IoT devices are dynamic,as attackers launch one kind of attack at one time and another kind of attack at another *** number of attacks and benign instances also vary from time to *** phenomenon of change in attack patterns is called concept ***,the attack detection system must learn continuously from the ever-changing real-time attack patterns in large-scale IoT network *** meet this requirement,in this work,we propose a data pipeline with Apache Kafka,Apache Spark structured streaming,and MongoDB that can adapt to the ever-changing attack patterns in real time and classify attacks in large-scale IoT *** concept drift is detected,the proposed system retrains the classifier with the instances that cause the drift and a representative subsample instances from the previous training of the *** proposed approach is evaluated with the latest dataset,IoT23,which consists of benign and several attack instances from various IoT *** classification accuracy is improved from 97.8%to 99.46%by the proposed *** training time of distributed random forest algorithm is also studied by varying the number of cores in Apache Spark environment.
— In recent years, significant efforts have been dedicated to detect human emotions. This interest primarily stems from the fact that emotions influence individuals' reactions and behaviors. Understanding these i...
详细信息
Combining auto encoders and hybrid cellular automata provides a novel way to identify anomalies in structured data in the field of anomaly detection. Dimensionality reduction and extracting the features is one of the ...
详细信息
Accurately predicting pharmacokinetic (PK) parameters such as absorption, distribution, metabolism, and excretion (ADME) is essential for optimizing drug efficacy, safety, and development timelines. Traditional experi...
详细信息
In the field of medical imaging, correct instance segmentation is essential. This work attempts to address the problems related to renal micro-structure segmentation by using the power of YOLOv8 and special MASK R-CNN...
详细信息
The Internet of Things (IoT) has gained significant attention as a research domain due to its wide-ranging applications. In this paper , we propose two deep learning models for IoT malware classification. Both models ...
详细信息
Side lobe level reduction(SLL)of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service(QOS)in recent and future wireless communication systems starting from 5G up t...
详细信息
Side lobe level reduction(SLL)of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service(QOS)in recent and future wireless communication systems starting from 5G up to ***,it improves the array gain and directivity,increasing the detection range and angular resolution of radar *** study proposes two highly efficient SLL reduction *** techniques are based on the hybridization between either the single convolution or the double convolution algorithms and the genetic algorithm(GA)to develop the Conv/GA andDConv/GA,*** convolution process determines the element’s excitations while the GA optimizes the element *** M elements linear antenna array(LAA),the convolution of the excitation coefficients vector by itself provides a new vector of excitations of length N=(2M−1).This new vector is divided into three different sets of excitations including the odd excitations,even excitations,and middle excitations of lengths M,M−1,andM,*** the same element spacing as the original LAA is used,it is noticed that the odd and even excitations provide a much lower SLL than that of the LAA but with amuch wider half-power beamwidth(HPBW).While the middle excitations give the same HPBWas the original LAA with a relatively higher *** the increased HPBWof the odd and even excitations,the element spacing is optimized using the ***,the synthesized arrays have the same HPBW as the original LAA with a two-fold reduction in the ***,for extreme SLL reduction,the DConv/GA is *** this technique,the same procedure of the aforementioned Conv/GA technique is performed on the resultant even and odd excitation *** provides a relatively wider HPBWthan the original LAA with about quad-fold reduction in the SLL.
Brain tumors are one of the deadliest diseases and require quick and accurate methods of detection. Finding the optimum image for research goals is the first step in optimizing MRI images for pre- and post-processing....
详细信息
作者:
Hiasat, Ahmad
School of Engineering Computer Engineering Department Amman Jordan
In this work, a new efficient modular adder that deals with modulus (2n-2k-1) is proposed, where n is a positive integer and k is a positive odd integer within the range 1 ≤ k ≤ n-3. The suggested circuit uses the r...
详细信息
暂无评论