The Quantum Internet of Things (QIoT) in the healthcare industry holds the promise of transforming patient care, diagnostics, and medical research. Quantum-enhanced sensors, communication, and computation offer unprec...
详细信息
The Quantum Internet of Things (QIoT) in the healthcare industry holds the promise of transforming patient care, diagnostics, and medical research. Quantum-enhanced sensors, communication, and computation offer unprecedented capabilities that can revolutionize how healthcare services are delivered and experienced. This paper explores the potential of QIoT in the context of smart healthcare, where interconnected quantum-enabled devices and systems create an ecosystem that enhances data security, enables real-time monitoring, and advances medical knowledge. We delve into the applications of quantum sensors in precise health monitoring, the role of quantum communication in secure telemedicine, and the computational power of quantum computing in drug discovery and personalized medicine. We discuss challenges such as technical feasibility, scalability, and regulatory considerations, along with the emerging trends and opportunities in this transformative field. By examining the intersection of quantum technologies and smart healthcare, this paper aims to shed light on the novel approaches and breakthroughs that could redefine the future of healthcare delivery and patient outcomes. IEEE
Disastrous situations pose a formidable challenge, testing our resilience against nature's fury and the race against time to prevent the loss of human life. It is noted that in such situations that Microblogging p...
详细信息
The segmentation of head and neck(H&N)tumors in dual Positron Emission Tomography/Computed Tomogra-phy(PET/CT)imaging is a critical task in medical imaging,providing essential information for diagnosis,treatment p...
详细信息
The segmentation of head and neck(H&N)tumors in dual Positron Emission Tomography/Computed Tomogra-phy(PET/CT)imaging is a critical task in medical imaging,providing essential information for diagnosis,treatment planning,and outcome *** by the need for more accurate and robust segmentation methods,this study addresses key research gaps in the application of deep learning techniques to multimodal medical ***,it investigates the limitations of existing 2D and 3D models in capturing complex tumor structures and proposes an innovative 2.5D UNet Transformer model as a *** primary research questions guiding this study are:(1)How can the integration of convolutional neural networks(CNNs)and transformer networks enhance segmentation accuracy in dual PET/CT imaging?(2)What are the comparative advantages of 2D,2.5D,and 3D model configurations in this context?To answer these questions,we aimed to develop and evaluate advanced deep-learning models that leverage the strengths of both CNNs and *** proposed methodology involved a comprehensive preprocessing pipeline,including normalization,contrast enhancement,and resampling,followed by segmentation using 2D,2.5D,and 3D UNet Transformer *** models were trained and tested on three diverse datasets:HeckTor2022,AutoPET2023,and *** was assessed using metrics such as Dice Similarity Coefficient,Jaccard Index,Average Surface Distance(ASD),and Relative Absolute Volume Difference(RAVD).The findings demonstrate that the 2.5D UNet Transformer model consistently outperformed the 2D and 3D models across most metrics,achieving the highest Dice and Jaccard values,indicating superior segmentation *** instance,on the HeckTor2022 dataset,the 2.5D model achieved a Dice score of 81.777 and a Jaccard index of 0.705,surpassing other model *** 3D model showed strong boundary delineation performance but exhibited variability across datasets,while the
The thyroid gland, a pivotal regulator of essential physiological functions, orchestrates the production and release of thyroid hormones, playing a vital role in metabolism, growth, development, and overall bodily fun...
详细信息
Current solutions that rely on a single-server architecture have privacy, anonymity, integrity, and confidentiality limitations. Blockchain-based solutions can address some of these issues but face challenges regulati...
详细信息
In recent times, the system's mathematical expression and operation have gained greater reach in engineering and mathematics. It is vital to solving more complex expressions and equations in a short time. The most...
详细信息
Advancements in neuromorphic computing have given an impetus to the development of systems with adaptive behavior,dynamic responses,and energy efficiency *** charge-based or emerging memory technologies such as memris...
详细信息
Advancements in neuromorphic computing have given an impetus to the development of systems with adaptive behavior,dynamic responses,and energy efficiency *** charge-based or emerging memory technologies such as memristors have been developed to emulate synaptic plasticity,replicating the key functionality of neurons—integrating diverse presynaptic inputs to fire electrical impulses—has remained *** this study,we developed reconfigurable metal-oxide-semiconductor capacitors(MOSCaps)based on hafnium diselenide(HfSe2).The proposed devices exhibit(1)optoelectronic synaptic features and perform separate stimulus-associated learning,indicating considerable adaptive neuron emulation,(2)dual light-enabled charge-trapping and memcapacitive behavior within the same MOSCap device,whose threshold voltage and capacitance vary based on the light intensity across the visible spectrum,(3)memcapacitor volatility tuning based on the biasing conditions,enabling the transition from volatile light sensing to non-volatile optical data *** reconfigurability and multifunctionality of MOSCap were used to integrate the device into a leaky integrate-and-fire neuron model within a spiking neural network to dynamically adjust firing patterns based on light stimuli and detect exoplanets through variations in light intensity.
Image tampering detection and localization have emerged as a critical domain in combating the pervasive issue of image manipulation due to the advancement of the large-scale availability of sophisticated image editing...
详细信息
Image tampering detection and localization have emerged as a critical domain in combating the pervasive issue of image manipulation due to the advancement of the large-scale availability of sophisticated image editing *** manual forgery localization is often reliant on forensic *** recent times,machine learning(ML)and deep learning(DL)have shown promising results in automating image forgery ***,the ML-based method relies on hand-crafted ***,the DL method automatically extracts shallow spatial features to enhance the ***,DL-based methods lack the global co-relation of the features due to this performance degradation noticed in several *** the proposed study,we designed FLTNet(forgery localization transformer network)with a CNN(convolution neural network)encoder and transformer-based *** encoder extracts local high-dimensional features,and the transformer provides the global co-relation of the *** the decoder,we have exclusively utilized a CNN to upsample the features that generate tampered mask ***,we evaluated visual and quantitative performance on three standard datasets and comparison with six state-of-the-art *** IoU values of the proposed method on CASIA V1,CASIA V2,and CoMoFoD datasets are 0.77,0.82,and 0.84,*** addition,the F1-scores of these three datasets are 0.80,0.84,and 0.86,***,the visual results of the proposed method are clean and contain rich information,which can be used for real-time forgery *** code used in the study can be accessed through URL:https://***/ajit2k5/Forgery-Localization(accessed on 21 January 2025).
Internet of Things (IoT) enabled Wireless Sensor Networks (WSNs) is not only constitute an encouraging research domain but also represent a promising industrial trend that permits the development of various IoT-based ...
详细信息
Parkinson’s disease is one of the most prevalent and harmful neurodegenerative conditions (PD). Even today, PD diagnosis and monitoring remain pricy and inconvenient processes. With the unprecedented progress of arti...
详细信息
暂无评论