The fast growth in Internet-of-Vehicles(IoV)applications is rendering energy efficiency management of vehicular networks a highly important *** of the existing models are failing to handle the demand for energy conser...
详细信息
The fast growth in Internet-of-Vehicles(IoV)applications is rendering energy efficiency management of vehicular networks a highly important *** of the existing models are failing to handle the demand for energy conservation in large-scale heterogeneous *** on Large Energy-Aware Fog(LEAF)computing,this paper proposes a new model to overcome energy-inefficient vehicular networks by simulating large-scale network *** main inspiration for this work is the ever-growing demand for energy efficiency in IoV-most particularly with the volume of generated data and connected *** proposed LEAF model enables researchers to perform simulations of thousands of streaming applications over distributed and heterogeneous *** the possible reasons is that it provides a realistic simulation environment in which compute nodes can dynamically join and leave,while different kinds of networking protocols-wired and wireless-can also be *** novelty of this work is threefold:for the first time,the LEAF model integrates online decision-making algorithms for energy-aware task placement and routing strategies that leverage power usage traces with efficiency optimization in *** existing fog computing simulators,data flows and power consumption are modeled as parameterizable mathematical equations in LEAF to ensure scalability and ease of analysis across a wide range of devices and *** results of evaluation show that LEAF can cover up to 98.75%of the distance,with devices ranging between 1 and 1000,showing significant energy-saving potential through A wide-area network(WAN)usage *** findings indicate great promise for fog computing in the future-in particular,models like LEAF for planning energy-efficient IoV infrastructures.
The agricultural sector contributes significantly to greenhouse gas emissions, which cause global warming and climate change. Numerous mathematical models have been developed to predict the greenhouse gas emissions fr...
详细信息
VPNs are vital for safeguarding communication routes in the continually changing cybersecurity ***,increasing network attack complexity and variety require increasingly advanced algorithms to recognize and categorizeV...
详细信息
VPNs are vital for safeguarding communication routes in the continually changing cybersecurity ***,increasing network attack complexity and variety require increasingly advanced algorithms to recognize and categorizeVPNnetwork *** present a novelVPNnetwork traffic flowclassificationmethod utilizing Artificial Neural Networks(ANN).This paper aims to provide a reliable system that can identify a virtual private network(VPN)traffic fromintrusion attempts,data exfiltration,and denial-of-service *** compile a broad dataset of labeled VPN traffic flows from various apps and usage ***,we create an ANN architecture that can handle encrypted communication and distinguish benign from dangerous *** effectively process and categorize encrypted packets,the neural network model has input,hidden,and output *** use advanced feature extraction approaches to improve the ANN’s classification accuracy by leveraging network traffic’s statistical and behavioral *** also use cutting-edge optimizationmethods to optimize network characteristics and *** suggested ANN-based categorization method is extensively tested and *** show the model effectively classifies VPN traffic *** also show that our ANN-based technique outperforms other approaches in precision,recall,and F1-score with 98.79%*** study improves VPN security and protects against new *** VPNtraffic flows effectively helps enterprises protect sensitive data,maintain network integrity,and respond quickly to security *** study advances network security and lays the groundwork for ANN-based cybersecurity solutions.
The droop-free control adopted in microgrids has been designed to cope with global power-sharing goals,i.e.,sharing disturbance mitigation among all controllable assets to even their ***,limited by neighboring communi...
详细信息
The droop-free control adopted in microgrids has been designed to cope with global power-sharing goals,i.e.,sharing disturbance mitigation among all controllable assets to even their ***,limited by neighboring communication,the time-consuming peer-to-peer coordination of the droopfree control slows down the nodal convergence to global consensus,reducing the power-sharing efficiency as the number of nodes *** this end,this paper first proposes a local power-sharing droop-free control scheme to contain disturbances within nearby nodes,in order to reduce the number of nodes involved in the coordination and accelerate the convergence speed.A hybrid local-global power-sharing scheme is then put forward to leverage the merits of both schemes,which also enables the autonomous switching between local and global power-sharing modes according to the system *** guidance for key control parameter designs is derived via the optimal control methods,by optimizing the power-sharing distributions at the steady-state consensus as well as along the dynamic trajectory to *** system stability of the hybrid scheme is proved by the eigenvalue analysis and Lyapunov direct ***,simulation results validate that the proposed hybrid local-global power-sharing scheme performs stably against disturbances and achieves the expected control performance in local and global power-sharing modes as well as mode ***,compared with the classical global power-sharing scheme,the proposed scheme presents promising benefits in convergence speed and scalability.
Background: The synthesis of reversible logic has gained prominence as a crucial research area, particularly in the context of post-CMOS computing devices, notably quantum computing. Objective: To implement the bitoni...
详细信息
With recent advancements made in wireless communication techniques,wireless sensors have become an essential component in both data collection as well as tracking *** Sensor Network(WSN)is an integral part of Internet...
详细信息
With recent advancements made in wireless communication techniques,wireless sensors have become an essential component in both data collection as well as tracking *** Sensor Network(WSN)is an integral part of Internet of Things(IoT)and it encounters different kinds of security *** is designed as a game changer for highly secure and effective digital ***,the current research paper focuses on the design of Metaheuristic-based Clustering with Routing Protocol for Blockchain-enabled WSN abbreviated as *** proposed MCRP-BWSN technique aims at deriving a shared memory scheme using blockchain technology and determine the optimal paths to reach the destination in clustered *** MCRP-BWSN technique,Chimp Optimization Algorithm(COA)-based clustering technique is designed to elect a proper set of Cluster Heads(CHs)and organize the selected *** addition,Horse Optimization Algorithm(HOA)-based routing technique is also presented to optimally select the routes based onfitness ***,HOA-based routing technique utilizes blockchain technology to avail the shared mem-ory among nodes in the *** nodes are treated as coins whereas the ownership handles the sensor nodes and Base Station(BS).In order to validate the enhanced performance of the proposed MCRP-BWSN technique,a wide range of simulations was conducted and the results were examined under different *** on the performance exhibited in simulation outcomes,the pro-posed MCRP-BWSN technique has been established as a promising candidate over other existing techniques.
The agriculture sector plays an important role to the nation's economy, contributing significantly to GDP and employing a sizable section of the labour force. Nonetheless, precisely projecting food production and ...
详细信息
Person identification is one of the most vital tasks for network security. People are more concerned about theirsecurity due to traditional passwords becoming weaker or leaking in various attacks. In recent decades, f...
详细信息
Person identification is one of the most vital tasks for network security. People are more concerned about theirsecurity due to traditional passwords becoming weaker or leaking in various attacks. In recent decades, fingerprintsand faces have been widely used for person identification, which has the risk of information leakage as a resultof reproducing fingers or faces by taking a snapshot. Recently, people have focused on creating an identifiablepattern, which will not be reproducible falsely by capturing psychological and behavioral information of a personusing vision and sensor-based techniques. In existing studies, most of the researchers used very complex patternsin this direction, which need special training and attention to remember the patterns and failed to capturethe psychological and behavioral information of a person properly. To overcome these problems, this researchdevised a novel dynamic hand gesture-based person identification system using a Leap Motion sensor. Thisstudy developed two hand gesture-based pattern datasets for performing the experiments, which contained morethan 500 samples, collected from 25 subjects. Various static and dynamic features were extracted from the handgeometry. Randomforest was used to measure feature importance using the Gini Index. Finally, the support vectormachinewas implemented for person identification and evaluate its performance using identification accuracy. Theexperimental results showed that the proposed system produced an identification accuracy of 99.8% for arbitraryhand gesture-based patterns and 99.6% for the same dynamic hand gesture-based patterns. This result indicatedthat the proposed system can be used for person identification in the field of security.
Researchers have recently created several deep learning strategies for various tasks, and facial recognition has made remarkable progress in employing these techniques. Face recognition is a noncontact, nonobligatory,...
详细信息
Researchers have recently created several deep learning strategies for various tasks, and facial recognition has made remarkable progress in employing these techniques. Face recognition is a noncontact, nonobligatory, acceptable, and harmonious biometric recognition method with a promising national and social security future. The purpose of this paper is to improve the existing face recognition algorithm, investigate extensive data-driven face recognition methods, and propose a unique automated face recognition methodology based on generative adversarial networks (GANs) and the center symmetric multivariable local binary pattern (CS-MLBP). To begin, this paper employs the center symmetric multivariant local binary pattern (CS-MLBP) algorithm to extract the texture features of the face, addressing the issue that C2DPCA (column-based two-dimensional principle component analysis) does an excellent job of removing the global characteristics of the face but struggles to process the local features of the face under large samples. The extracted texture features are combined with the international features retrieved using C2DPCA to generate a multifeatured face. The proposed method, GAN-CS-MLBP, syndicates the power of GAN with the robustness of CS-MLBP, resulting in an accurate and efficient face recognition system. Deep learning algorithms, mainly neural networks, automatically extract discriminative properties from facial images. The learned features capture low-level information and high-level meanings, permitting the model to distinguish among dissimilar persons more successfully. To assess the proposed technique’s GAN-CS-MLBP performance, extensive experiments are performed on benchmark face recognition datasets such as LFW, YTF, and CASIA-WebFace. Giving to the findings, our method exceeds state-of-the-art facial recognition systems in terms of recognition accuracy and resilience. The proposed automatic face recognition system GAN-CS-MLBP provides a solid basis for a
Brain signal analysis from electroencephalogram(EEG)recordings is the gold standard for diagnosing various neural disorders especially epileptic *** signals are highly chaotic compared to normal brain signals and thus...
详细信息
Brain signal analysis from electroencephalogram(EEG)recordings is the gold standard for diagnosing various neural disorders especially epileptic *** signals are highly chaotic compared to normal brain signals and thus can be identified from EEG *** the current seizure detection and classification landscape,most models primarily focus on binary classification—distinguishing between seizure and non-seizure *** effective for basic detection,these models fail to address the nuanced stages of seizures and the intervals between *** identification of per-seizure or interictal stages and the timing between seizures is crucial for an effective seizure alert *** granularity is essential for improving patient-specific interventions and developing proactive seizure management *** study addresses this gap by proposing a novel AI-based approach for seizure stage classification using a Deep Convolutional Neural Network(DCNN).The developed model goes beyond traditional binary classification by categorizing EEG recordings into three distinct classes,thus providing a more detailed analysis of seizure *** enhance the model’s performance,we have optimized the DCNN using two advanced techniques:the Stochastic Gradient Algorithm(SGA)and the evolutionary Genetic Algorithm(GA).These optimization strategies are designed to fine-tune the model’s accuracy and ***,k-fold cross-validation ensures the model’s reliability and generalizability across different data *** and validated on the Bonn EEG data sets,the proposed optimized DCNN model achieved a test accuracy of 93.2%,demonstrating its ability to accurately classify EEG *** summary,the key advancement of the present research lies in addressing the limitations of existing models by providing a more detailed seizure classification system,thus potentially enhancing the effectiveness of real-time seizure prediction and management systems in clinic
暂无评论