Automatic Speech Recognition (ASR) has been the regnant research area in the domain of Natural Language Processing for the last few decades. Past years’ advancement provides progress in this area of research. The acc...
详细信息
Sign language recognition is an important social issue to be addressed which can benefit the deaf and hard of hearing community by providing easier and faster communication. Some previous studies on sign language reco...
详细信息
Now-a-days, the generation of videos has increased dramatically due to the quick growth of multimedia and the internet. The need for effective ways to store, manage, and index the massive numbers of videos has become ...
详细信息
Ransomware attacks have emerged as one of the most significant cyberthreats faced by organizations worldwide. In recent years, ransomware has also started to target critical infrastructure and Cyber-Physical Systems (...
详细信息
Aflood is a significant damaging natural calamity that causes loss of life and *** work on the construction offlood prediction models intended to reduce risks,suggest policies,reduce mortality,and limit property damage c...
详细信息
Aflood is a significant damaging natural calamity that causes loss of life and *** work on the construction offlood prediction models intended to reduce risks,suggest policies,reduce mortality,and limit property damage caused byfl*** massive amount of data generated by social media platforms such as Twitter opens the door toflood *** of the real-time nature of Twitter data,some government agencies and authorities have used it to track natural catastrophe events in order to build a more rapid rescue ***,due to the shorter duration of Tweets,it is difficult to construct a perfect prediction model for determiningfl*** learning(ML)and deep learning(DL)approaches can be used to statistically developflood prediction *** the same time,the vast amount of Tweets necessitates the use of a big data analytics(BDA)tool forflood *** this regard,this work provides an optimal deep learning-basedflood forecasting model with big data analytics(ODLFF-BDA)based on Twitter *** suggested ODLFF-BDA technique intends to anticipate the existence offloods using tweets in a big data *** ODLFF-BDA technique comprises data pre-processing to convert the input tweets into a usable *** addition,a Bidirectional Encoder Representations from Transformers(BERT)model is used to generate emotive contextual embed-ding from ***,a gated recurrent unit(GRU)with a Multilayer Convolutional Neural Network(MLCNN)is used to extract local data and predict thefl***,an Equilibrium Optimizer(EO)is used tofine-tune the hyper-parameters of the GRU and MLCNN models in order to increase prediction *** memory usage is pull down lesser than 3.5 MB,if its compared with the other algorithm *** ODLFF-BDA technique’s performance was validated using a benchmark Kaggle dataset,and thefindings showed that it outperformed other recent approaches significantly.
In neurology, it is critical to promptly and precisely identify epileptic episodes using EEG data. Interpretability and thorough model evaluation are still crucial to guarantee reliability, even though machine learnin...
详细信息
作者:
Manjunatha, A.S.Venkatramana Bhat, P.
Department of Computer and Communication Engineering India
Department of Computer Science and Engineering India
Data is collected and forwarded to the cluster head by sensor nodes in the Wireless Sensor Network (WSN). Ensuring the confidentiality and integrity of the data that must be provided to the base station is tough. We r...
详细信息
作者:
Baba, AbdullatifAlothman, Basil
Computer Science and Engineering Department Kuwait
Computer Engineering Department Ankara Turkey
This paper explores essential aspects of autonomous underwater vehicle (AUV) design, focusing on hull structure, hydrodynamics, propulsion systems, and sensor integration. It also examines the role of underwater Simul...
详细信息
This paper presents a machine-learning method for detecting jamming UAVs and classifying nodes during jamming attacks onWireless Sensor Networks(WSNs).Jamming is a type of Denial of Service(DoS)attack and intentional ...
详细信息
This paper presents a machine-learning method for detecting jamming UAVs and classifying nodes during jamming attacks onWireless Sensor Networks(WSNs).Jamming is a type of Denial of Service(DoS)attack and intentional interference where a malicious node transmits a high-power signal to increase noise on the receiver side to disrupt the communication channel and reduce performance *** defend and prevent such attacks,the first step is to detect *** current detection approaches use centralized techniques to detect jamming,where each node collects information and forwards it to the base *** a result,overhead and communication costs *** this work,we present a jamming attack and classify nodes into different categories based on their location to the jammer by employing a single node *** a result,we introduced a machine learning model that uses distance ratios and power received as features to detect such ***,we considered several types of jammers transmitting at different power levels to evaluate the proposed metrics using *** a detection accuracy of 99.7%for the k-nearest neighbors(KNN)algorithm and average testing accuracy of 99.9%,the presented solution is capable of efficiently and accurately detecting jamming attacks in wireless sensor networks.
The core task in natural language processing (NLP) is text summarization, which condenses important information from large volumes of text into brief summaries. This study reviews text summarization strategies using N...
详细信息
暂无评论