The network security analyzers use intrusion detection systems(IDSes)to distinguish malicious traffic from benign *** deep learning-based(DL-based)IDSes are proposed to auto-extract high-level features and eliminate t...
详细信息
The network security analyzers use intrusion detection systems(IDSes)to distinguish malicious traffic from benign *** deep learning-based(DL-based)IDSes are proposed to auto-extract high-level features and eliminate the time-consuming and costly signature extraction ***,this new generation of IDSes still needs to overcome a number of challenges to be employed in practical *** of the main issues of an applicable IDS is facing traffic concept drift,which manifests itself as new(i.e.,zero-day)attacks,in addition to the changing behavior of benign users/***,a practical DL-based IDS needs to be conformed to a distributed(i.e.,multi-sensor)architecture in order to yield more accurate detections,create a collective attack knowledge based on the observations of different sensors,and also handle big data challenges for supporting high throughput *** paper proposes a novel multi-agent network intrusion detection framework to address the above shortcomings,considering a more practical scenario(i.e.,online adaptable IDSes).This framework employs continual deep anomaly detectors for adapting each agent to the changing attack/benign patterns in its local *** addition,a federated learning approach is proposed for sharing and exchanging local knowledge between different ***,the proposed framework implements sequential packet labeling for each flow,which provides an attack probability score for the flow by gradually observing each flow packet and updating its *** evaluate the proposed framework by employing different deep models(including CNN-based and LSTM-based)over the CICIDS2017 and CSE-CIC-IDS2018 *** extensive evaluations and experiments,we show that the proposed distributed framework is well adapted to the traffic concept *** precisely,our results indicate that the CNNbased models are well suited for continually adapting to the traffic concept drift(i.e.,achieving
Data collection using mobile sink(s) has proven to reduce energy consumption and enhance the network lifetime of wireless sensor networks. Generally speaking, a mobile sink (MS) traverses the network region, sojournin...
详细信息
Over-the-air computation(AirComp)enables federated learning(FL)to rapidly aggregate local models at the central server using waveform superposition property of wireless *** this paper,a robust transmission scheme for ...
详细信息
Over-the-air computation(AirComp)enables federated learning(FL)to rapidly aggregate local models at the central server using waveform superposition property of wireless *** this paper,a robust transmission scheme for an AirCompbased FL system with imperfect channel state information(CSI)is *** model CSI uncertainty,an expectation-based error model is *** main objective is to maximize the number of selected devices that meet mean-squared error(MSE)requirements for model broadcast and model *** problem is formulated as a combinatorial optimization problem and is solved in two ***,the priority order of devices is determined by a sparsity-inducing ***,a feasibility detection scheme is used to select the maximum number of devices to guarantee that the MSE requirements are *** alternating optimization(AO)scheme is used to transform the resulting nonconvex problem into two convex *** results illustrate the effectiveness and robustness of the proposed scheme.
This paper presents a novel, energy-efficient routing approach for underwater sensor networks in tsunami early warning. Our system utilizes sensor nodes equipped with piezoelectric energy harvesting to extend network ...
详细信息
This paper presents a novel, energy-efficient routing approach for underwater sensor networks in tsunami early warning. Our system utilizes sensor nodes equipped with piezoelectric energy harvesting to extend network lifetime and stability. Continuous sensing is replaced with a duty-cycled approach to conserve energy, where the ocean surface is divided into regions and sensor nodes are grouped. These groups become active at designated intervals, while others remain dormant. The system leverages satellite networks to complement the underwater sensor network, enabling collected data to reach the central hub of early warning systems. A statistical analysis assigns scores to potential routes based on their energy consumption, prioritizing low-energy paths. Probability theory is employed to calculate the minimum number of transmission paths needed to achieve a predetermined level of reliability. A well-established tsunami wave prediction system is used to select the most suitable next hop for data transmission to avoid interference with tsunami wave propagation. Simulation results demonstrate significant improvements in energy efficiency, end-to-end delay, sensor and relay node lifespan, and network stability compared to recent research. These achievements highlight the effectiveness of our proposed routing approach in achieving energy efficiency and reliable data transmission within a tsunami early warning system. IEEE
Integrated sensing and communication (ISAC) is a promising technique to increase spectral efficiency and support various emerging applications by sharing the spectrum and hardware between these functionalities. Howeve...
详细信息
Integrated sensing and communication (ISAC) is a promising technique to increase spectral efficiency and support various emerging applications by sharing the spectrum and hardware between these functionalities. However, the traditional ISAC schemes are highly dependent on the accurate mathematical model and suffer from the challenges of high complexity and poor performance in practical scenarios. Recently, artificial intelligence (AI) has emerged as a viable technique to address these issues due to its powerful learning capabilities, satisfactory generalization capability, fast inference speed, and high adaptability for dynamic environments, facilitating a system design shift from model-driven to data-driven. Intelligent ISAC, which integrates AI into ISAC, has been a hot topic that has attracted many researchers to investigate. In this paper, we provide a comprehensive overview of intelligent ISAC, including its motivation, typical applications, recent trends, and challenges. In particular, we first introduce the basic principle of ISAC, followed by its key techniques. Then, an overview of AI and a comparison between model-based and AI-based methods for ISAC are provided. Furthermore, the typical applications of AI in ISAC and the recent trends for AI-enabled ISAC are reviewed. Finally, the future research issues and challenges of intelligent ISAC are discussed.
In recent years, mental health issues have profoundly impacted individuals’ well-being, necessitating prompt identification and intervention. Existing approaches grapple with the complex nature of mental health, faci...
详细信息
In recent years, mental health issues have profoundly impacted individuals’ well-being, necessitating prompt identification and intervention. Existing approaches grapple with the complex nature of mental health, facing challenges like task interference, limited adaptability, and difficulty in capturing nuanced linguistic expressions indicative of various conditions. In response to these challenges, our research presents three novel models employing multi-task learning (MTL) to understand mental health behaviors comprehensively. These models encompass soft-parameter sharing-based long short-term memory with attention mechanism (SPS-LSTM-AM), SPS-based bidirectional gated neural networks with self-head attention mechanism (SPS-BiGRU-SAM), and SPS-based bidirectional neural network with multi-head attention mechanism (SPS-BNN-MHAM). Our models address diverse tasks, including detecting disorders such as bipolar disorder, insomnia, obsessive-compulsive disorder, and panic in psychiatric texts, alongside classifying suicide or non-suicide-related texts on social media as auxiliary tasks. Emotion detection in suicide notes, covering emotions of abuse, blame, and sorrow, serves as the main task. We observe significant performance enhancement in the primary task by incorporating auxiliary tasks. Advanced encoder-building techniques, including auto-regressive-based permutation and enhanced permutation language modeling, are recommended for effectively capturing mental health contexts’ subtleties, semantic nuances, and syntactic structures. We present the shared feature extractor called shared auto-regressive for language modeling (S-ARLM) to capture high-level representations that are useful across tasks. Additionally, we recommend soft-parameter sharing (SPS) subtypes-fully sharing, partial sharing, and independent layer-to minimize tight coupling and enhance adaptability. Our models exhibit outstanding performance across various datasets, achieving accuracies of 96.9%, 97.
Stress has a remarkable impact on various cognitive functions, demanding timely and effective detection using strategies deployed across interdisciplinary domains. It influences decision-making, attention, learning, a...
详细信息
Stress has a remarkable impact on various cognitive functions, demanding timely and effective detection using strategies deployed across interdisciplinary domains. It influences decision-making, attention, learning, and problem-solving abilities. As a result, stress detection and modeling have become important areas of study in both psychology and computer science. This study links the fields of psychology and machine learning to deal with the urgent requirement of accurate stress detection methodologies and highlights sleep patterns as a key indicator for stress detection, discussing a novel approach to understand and determine stress levels. Psychologists use affective states to measure stress, which refers to a sense of feeling an underlying emotional state. However, most stress classification work has been limited to user-dependent models, which new users cannot use without additional training. This can be a significant time burden for new users trying to predict their affective states. Therefore, it is critical to address basic mental health issues in children and adults to prevent them from developing more complex problems on account of undergoing stress. The medical field processes vast amounts of medical data;the machine learning algorithms sift through patterns that might escape the human eye. The machine learning algorithms act as detectives, able to spot correlations and bring out a sense of complex information. The machine learning algorithms reveal fine correlations and patterns, aiding in more precise and prompt diagnoses particularly to focus fundamental mental health issues in individuals of all ages. This research work deploys an enhanced Multilayer Perceptron (MLP), exhibiting an extensive feature analysis for processing medical datasets, resulting in improved effectiveness in predicting stress levels. This helps us to diagnose issues more accurately and swiftly which improves the patient outcomes. The proposed and enhanced MLP model undergoes stri
This article introduces a novel approach to bolster the robustness of Deep Neural Network (DNN) models against adversarial attacks named "Targeted Adversarial Resilience Learning (TARL)". The initial ev...
详细信息
Total shoulder arthroplasty is a standard restorative procedure practiced by orthopedists to diagnose shoulder arthritis in which a prosthesis replaces the whole joint or a part of the *** is often challenging for doc...
详细信息
Total shoulder arthroplasty is a standard restorative procedure practiced by orthopedists to diagnose shoulder arthritis in which a prosthesis replaces the whole joint or a part of the *** is often challenging for doctors to identify the exact model and manufacturer of the prosthesis when it is *** paper proposes a transfer learning-based class imbalance-aware prosthesis detection method to detect the implant’s manufacturer automatically from shoulder X-ray *** framework of the method proposes a novel training approach and a new set of batch-normalization,dropout,and fully convolutional layers in the head *** employs cyclical learning rates and weighting-based loss calculation *** modifications aid in faster convergence,avoid local-minima stagnation,and remove the training bias caused by imbalanced *** proposed method is evaluated using seven well-known pre-trained models of VGGNet,ResNet,and DenseNet *** is performed on a shoulder implant benchmark dataset consisting of 597 shoulder X-ray *** proposed method improves the classification performance of all pre-trained models by 10–12%.The DenseNet-201-based variant has achieved the highest classification accuracy of 89.5%,which is 10%higher than existing ***,to validate and generalize the proposed method,the existing baseline dataset is supplemented to six classes,including samples of two more implant *** results have shown average accuracy of 86.7%for the extended dataset and show the preeminence of the proposed method.
Matrix minimization techniques that employ the nuclear norm have gained recognition for their applicability in tasks like image inpainting, clustering, classification, and reconstruction. However, they come with inher...
详细信息
Matrix minimization techniques that employ the nuclear norm have gained recognition for their applicability in tasks like image inpainting, clustering, classification, and reconstruction. However, they come with inherent biases and computational burdens, especially when used to relax the rank function, making them less effective and efficient in real-world scenarios. To address these challenges, our research focuses on generalized nonconvex rank regularization problems in robust matrix completion, low-rank representation, and robust matrix regression. We introduce innovative approaches for effective and efficient low-rank matrix learning, grounded in generalized nonconvex rank relaxations inspired by various substitutes for the ?0-norm relaxed functions. These relaxations allow us to more accurately capture low-rank structures. Our optimization strategy employs a nonconvex and multi-variable alternating direction method of multipliers, backed by rigorous theoretical analysis for complexity and *** algorithm iteratively updates blocks of variables, ensuring efficient convergence. Additionally, we incorporate the randomized singular value decomposition technique and/or other acceleration strategies to enhance the computational efficiency of our approach, particularly for large-scale constrained minimization problems. In conclusion, our experimental results across a variety of image vision-related application tasks unequivocally demonstrate the superiority of our proposed methodologies in terms of both efficacy and efficiency when compared to most other related learning methods.
暂无评论