The most common type of malignant brain tumor, gliomas, has a variety of grades that significantly impact a patient’s chance of survival. Accurate segmentation of brain tumor regions from MRI images is crucial for en...
详细信息
Delay/disruption tolerant networking(DTN) is proposed as a networking architecture to overcome challenging space communication characteristics for reliable data transmission service in presence of long propagation del...
详细信息
Delay/disruption tolerant networking(DTN) is proposed as a networking architecture to overcome challenging space communication characteristics for reliable data transmission service in presence of long propagation delays and/or lengthy link disruptions. Bundle protocol(BP) and Licklider Transmission Protocol(LTP) are the main key technologies for DTN. LTP red transmission offers a reliable transmission mechanism for space networks. One of the key metrics used to measure the performance of LTP in space applications is the end-to-end data delivery delay, which is influenced by factors such as the quality of spatial channels and the size of cross-layer packets. In this paper, an end-to-end reliable data delivery delay model of LTP red transmission is proposed using a roulette wheel algorithm, and the roulette wheel algorithm is more in line with the typical random characteristics in space networks. The proposed models are validated through real data transmission experiments on a semi-physical testing platform. Furthermore, the impact of cross-layer packet size on the performance of LTP reliable transmission is analyzed, with a focus on bundle size, block size, and segment size. The analysis and study results presented in this paper offer valuable contributions towards enhancing the reliability of LTP transmission in space communication scenarios.
The increase in number of people using the Internet leads to increased cyberattack *** Persistent Threats,or APTs,are among the most dangerous targeted *** attacks utilize various advanced tools and techniques for att...
详细信息
The increase in number of people using the Internet leads to increased cyberattack *** Persistent Threats,or APTs,are among the most dangerous targeted *** attacks utilize various advanced tools and techniques for attacking targets with specific *** countries with advanced technologies,like the US,Russia,the UK,and India,are susceptible to this targeted *** is a sophisticated attack that involves multiple stages and specific ***,TTP(Tools,Techniques,and Procedures)involved in the APT attack are commonly new and developed by an attacker to evade the security ***,APTs are generally implemented in multiple *** one of the stages is detected,we may apply a defense mechanism for subsequent stages,leading to the entire APT attack *** detection at the early stage of APT and the prediction of the next step in the APT kill chain are ongoing *** survey paper will provide knowledge about APT attacks and their essential *** follows the case study of known APT attacks,which will give clear information about the APT attack process—in later sections,highlighting the various detection methods defined by different researchers along with the limitations of the *** used in this article comes from the various annual reports published by security experts and blogs and information released by the enterprise networks targeted by the attack.
The security of the wireless sensor network-Internet of Things(WSN-IoT)network is more challenging due to its randomness and self-organized *** detection is one of the key methodologies utilized to ensure the security...
详细信息
The security of the wireless sensor network-Internet of Things(WSN-IoT)network is more challenging due to its randomness and self-organized *** detection is one of the key methodologies utilized to ensure the security of the *** intrusion detection mechanisms have issues such as higher misclassification rates,increased model complexity,insignificant feature extraction,increased training time,increased run time complexity,computation overhead,failure to identify new attacks,increased energy consumption,and a variety of other factors that limit the performance of the intrusion system *** this research a security framework for WSN-IoT,through a deep learning technique is introduced using Modified Fuzzy-Adaptive DenseNet(MF_AdaDenseNet)and is benchmarked with datasets like NSL-KDD,UNSWNB15,CIDDS-001,Edge IIoT,Bot *** this,the optimal feature selection using Capturing Dingo Optimization(CDO)is devised to acquire relevant features by removing redundant *** proposed MF_AdaDenseNet intrusion detection model offers significant benefits by utilizing optimal feature selection with the CDO *** results in enhanced Detection Capacity with minimal computation complexity,as well as a reduction in False Alarm Rate(FAR)due to the consideration of classification error in the fitness *** a result,the combined CDO-based feature selection and MF_AdaDenseNet intrusion detection mechanism outperform other state-of-the-art techniques,achieving maximal Detection Capacity,precision,recall,and F-Measure of 99.46%,99.54%,99.91%,and 99.68%,respectively,along with minimal FAR and Mean Absolute Error(MAE)of 0.9%and 0.11.
Several approaches can detect early heart problems. Electrocardiograms (ECGs) are better and more affordable for early heart disease prediction. ECG data can better predict heart diseases and abnormalities. Standard m...
详细信息
Rice is a major crop and staple food for more than half of the world’s population and plays a vital role in ensuring food security as well as the global economy pests and diseases pose a threat to the production of r...
详细信息
Rice is a major crop and staple food for more than half of the world’s population and plays a vital role in ensuring food security as well as the global economy pests and diseases pose a threat to the production of rice and have a substantial impact on the yield and quality of the crop. In recent times, deep learning methods have gained prominence in predicting rice leaf diseases. Despite the increasing use of these methods, there are notable limitations in existing approaches. These include a scarcity of extensive and diverse collections of leaf disease images, lower accuracy rates, higher time complexity, and challenges in real-time leaf disease detection. To address the limitations, we explicitly investigate various data augmentation approaches using different generative adversarial networks (GANs) for rice leaf disease detection. Along with the GAN model, advanced CNN-based classifiers have been applied to classify the images with improving data augmentation. Our approach involves employing various GANs to generate high-quality synthetic images. This strategy aims to tackle the challenges posed by limited and imbalanced datasets in the identification of leaf diseases. The key benefit of incorporating GANs in leaf disease detection lies in their ability to create synthetic images, effectively augmenting the dataset’s size, enhancing diversity, and reducing the risk of overfitting. For dataset augmentation, we used three distinct GAN architectures—namely simple GAN, CycleGAN, and DCGAN. Our experiments demonstrated that models utilizing the GAN-augmented dataset generally outperformed those relying on the non-augmented dataset. Notably, the CycleGAN architecture exhibited the most favorable outcomes, with the MobileNet model achieving an accuracy of 98.54%. These findings underscore the significant potential of GAN models in improving the performance of detection models for rice leaf diseases, suggesting their promising role in the future research within this doma
In the manuscript, an automatic approach for analysis and detection of various stages of retinopathy defects in human eyes has been proposed. The approach consists of a robust preprocessing technique of the retina fun...
详细信息
In prospective advancements, it is anticipated that software-defined networking (SDN) will establish itself as the principal framework for the implementation of heterogeneous networks. Unlike traditional networking pa...
详细信息
We introduce Adversarial Sparse Teacher (AST), a robust defense method against distillation-based model stealing attacks. Our approach trains a teacher model using adversarial examples to produce sparse logit response...
详细信息
暂无评论