One of the pressing concerns for emerging nations is maintenance of roads, including identification and repair of pavement distress. Previous research has focused on pothole detection and lane identification, with the...
详细信息
Prediction of stability in SG(Smart Grid)is essential in maintaining consistency and reliability of power supply in grid *** the fluctuations in power generation and consumption patterns of smart cities assists in eff...
详细信息
Prediction of stability in SG(Smart Grid)is essential in maintaining consistency and reliability of power supply in grid *** the fluctuations in power generation and consumption patterns of smart cities assists in effectively managing continuous power supply in the *** also possesses a better impact on averting overloading and permitting effective energy *** though many traditional techniques have predicted the consumption rate for preserving stability,enhancement is required in prediction measures with minimized *** overcome the complications in existing studies,this paper intends to predict stability from the smart grid stability prediction dataset using machine learning *** accomplish this,pre-processing is performed initially to handle missing values since it develops biased models when missing values are mishandled and performs feature scaling to normalize independent data ***,the pre-processed data are taken for training and *** that,the regression process is performed using Modified PSO(Particle Swarm Optimization)optimized XGBoost Technique with dynamic inertia weight update,which analyses variables like gamma(G),reaction time(tau1–tau4),and power balance(p1–p4)for providing effective future stability in *** PSO attains optimal solution by adjusting position through dynamic inertial weights,it is integrated with XGBoost due to its scalability and faster computational speed *** hyperparameters of XGBoost are fine-tuned in the training process for achieving promising outcomes on *** results are measured through evaluation metrics such as MSE(Mean Square Error)of 0.011312781,MAE(Mean Absolute Error)of 0.008596322,and RMSE(Root Mean Square Error)of 0.010636156 and MAPE(Mean Absolute Percentage Error)value of 0.0052 which determine the efficacy of the system.
Reinforcement learning (RL)-based Brain-Machine Interfaces (BMIs) hold promise for restoring motor functions in paralyzed individuals. These interfaces interpret neural activity to control external devices through tri...
详细信息
Chronic liver damage is believed to be mostly caused by the Hepatitis C virus (HCV). About 90% of hepatitis C infections progress to chronic hepatitis. Acute HCV infection is a condition that frequently progresses to ...
详细信息
When real-world engineering challenges are examined adequately, it becomes clear that multi-objective need to be optimized. Many engineering problems have been handled utilizing the decomposition-based optimization ap...
详细信息
Automated segmentation and classification of biomedical images act as a vital part of the diagnosis of brain tumors(BT).A primary tumor brain analysis suggests a quicker response from treatment that utilizes for impro...
详细信息
Automated segmentation and classification of biomedical images act as a vital part of the diagnosis of brain tumors(BT).A primary tumor brain analysis suggests a quicker response from treatment that utilizes for improving patient survival *** location and classification of BTs from huge medicinal images database,obtained from routine medical tasks with manual processes are a higher cost together in effort and *** automatic recognition,place,and classifier process was desired and *** study introduces anAutomatedDeepResidualU-Net Segmentation with Classification model(ADRU-SCM)for Brain Tumor *** presentedADRUSCM model majorly focuses on the segmentation and classification of *** accomplish this,the presented ADRU-SCM model involves wiener filtering(WF)based preprocessing to eradicate the noise that exists in *** addition,the ADRU-SCM model follows deep residual U-Net segmentation model to determine the affected brain ***,VGG-19 model is exploited as a feature ***,tunicate swarm optimization(TSO)with gated recurrent unit(GRU)model is applied as a classification model and the TSO algorithm effectually tunes *** performance validation of the ADRU-SCM model was tested utilizing FigShare dataset and the outcomes pointed out the better performance of the ADRU-SCM approach on recent approaches.
Cerebral stroke is a major health problem, and if not recognized and treated immediately, it can result in considerable morbidity and fatality. Predicting the possibility of a stroke can help with intervention, result...
详细信息
Intelligent Transportation Systems (ITS) generate massive amounts of Big Data through both sensory and non-sensory platforms. The data support batch processing as well as stream processing, which are essential for rel...
详细信息
Intelligent Transportation Systems (ITS) generate massive amounts of Big Data through both sensory and non-sensory platforms. The data support batch processing as well as stream processing, which are essential for reliable operations on the roads and connected vehicles in ITS. Despite the immense potential of Big Data intelligence in ITS, autonomous vehicles are largely confined to testing and trial phases. The research community is working tirelessly to improve the reliability of ITS by designing new protocols, standards, and connectivity paradigms. In the recent past, several surveys have been conducted that focus on Big Data Intelligence for ITS, yet none of them have comprehensively addressed the fundamental challenges hindering the widespread adoption of autonomous vehicles on the roads. Our survey aims to help readers better understand the technological advancements by delving deep into Big Data architecture, focusing on data acquisition, data storage, and data visualization. We reviewed sensory and non-sensory platforms for data acquisition, data storage repositories for archival and retrieval of large datasets, and data visualization for presenting the processed data in an interactive and comprehensible format. To this end, we discussed the current research progress by comprehensively covering the literature and highlighting challenges that urgently require the attention of the research community. Based on the concluding remarks, we argued that these challenges hinder the widespread presence of autonomous vehicles on the roads. Understanding these challenges is important for a more informed discussion on the future of self-driven technology. Moreover, we acknowledge that these challenges not only affect individual layers but also impact the functionality of subsequent layers. Finally, we outline our future work that explores how resolving these challenges could enable the realization of innovations such as smart charging systems on the roads and data centers
The Internet of Medical Things (IoMT) brings advanced patient monitoring and predictive analytics to healthcare but also raises cybersecurity and data privacy issues. This paper introduces a deep-learning model for Io...
详细信息
In the charity sector, fundraising and transparency have long been key issues. Charity NFT (Non-Fungible Token) auctions, an emerging charity fundraising model integrating blockchain and NFT concepts, bring opportunit...
详细信息
暂无评论