This study applies single-valued neutrosophic sets, which extend the frameworks of fuzzy and intuitionistic fuzzy sets, to graph theory. We introduce a new category of graphs called Single-Valued Heptapartitioned Neut...
详细信息
Brain tumor is a global issue due to which several people suffer,and its early diagnosis can help in the treatment in a more efficient *** different types of brain tumors,including gliomas,meningiomas,pituitary tumors...
详细信息
Brain tumor is a global issue due to which several people suffer,and its early diagnosis can help in the treatment in a more efficient *** different types of brain tumors,including gliomas,meningiomas,pituitary tumors,as well as confirming the absence of tumors,poses a significant challenge using MRI *** approaches predominantly rely on traditional machine learning and basic deep learning methods for image *** methods often rely on manual feature extraction and basic convolutional neural networks(CNNs).The limitations include inadequate accuracy,poor generalization of new data,and limited ability to manage the high variability in MRI *** the EfficientNetB3 architecture,this study presents a groundbreaking approach in the computational engineering domain,enhancing MRI-based brain tumor *** approach highlights a major advancement in employing sophisticated machine learning techniques within computerscience and engineering,showcasing a highly accurate framework with significant potential for healthcare *** model achieves an outstanding 99%accuracy,exhibiting balanced precision,recall,and F1-scores across all tumor types,as detailed in the classification *** successful implementation demonstrates the model’s potential as an essential tool for diagnosing and classifying brain tumors,marking a notable improvement over current *** integration of such advanced computational techniques in medical diagnostics can significantly enhance accuracy and efficiency,paving the way for wider *** research highlights the revolutionary impact of deep learning technologies in improving diagnostic processes and patient outcomes in neuro-oncology.
Notable tech companies such as Facebook, Microsoft, Apple, Google, and a number of game companies have launched bold plans to bring the metaverse to life. It is inevitable that in the years to come, virtual worlds wil...
详细信息
The ever-expanding Internet of Things (IoT) landscape presents a double-edged sword. While it fosters interconnectedness, the vast amount of data generated by IoT devices creates a larger attack surface for cybercrimi...
详细信息
The ever-expanding Internet of Things (IoT) landscape presents a double-edged sword. While it fosters interconnectedness, the vast amount of data generated by IoT devices creates a larger attack surface for cybercriminals. Intrusions in these environments can have severe consequences. To combat this growing threat, robust intrusion detection systems (IDS) are crucial. The data comprised by this attack is multivariate, highly complex, non-stationary, and nonlinear. To extract the complex patterns from this complex data, we require the most robust, optimized tools. Machine learning (ML) and deep learning (DL) have emerged as powerful tools for IDSs, offering high accuracy in detecting and preventing security breaches. This research delves into anomaly detection, a technique that identifies deviations from normal system behavior, potentially indicating attacks. Given the complexity of anomaly data, we explore methods to improve detection performance. This research investigates the design and evaluation of a novel IDS. We leverage and optimize supervised ML methods like tree-based Support Vector Machines (SVM), ensemble methods, and neural networks (NN) alongside the cutting-edge DL approach of long short-term memory (LSTM) and vision transformers (ViT). We optimized the hyperparameters of these algorithms using a robust Bayesian optimization approach. The implemented ML models achieved impressive training accuracy, with Random Forest and Ensemble Bagged Tree surpassing 99.90% of accuracy, an AUC of 1.00, an F1-score, and a balanced Matthews Correlation Coefficient (MCC) of 99.78%. While the initial deep learning LSTM model yielded an accuracy of 99.97%, the proposed ViT architecture significantly boosted performance with 100% of all metrics, along with a validation accuracy of 78.70% and perfect training accuracy. This study demonstrates the power of our new methods for detecting and stopping attacks on Internet of Things (IoT) networks. This improved detection offers
The use of drones in search-and-rescue missions allows us to easily search areas that are inaccessible to humans and enables rapid and efficient mission execution with minimal manpower. In this paper, we propose a sea...
详细信息
The women's safe return home service is short on operating hours and manpower. To address this social issue, this paper proposes an unmanned solution using a smart drone. When a user calls this system, it generate...
详细信息
Human Activity Recognition(HAR)is an active research area due to its applications in pervasive computing,human-computer interaction,artificial intelligence,health care,and social ***,dynamic environments and anthropom...
详细信息
Human Activity Recognition(HAR)is an active research area due to its applications in pervasive computing,human-computer interaction,artificial intelligence,health care,and social ***,dynamic environments and anthropometric differences between individuals make it harder to recognize *** study focused on human activity in video sequences acquired with an RGB camera because of its vast range of real-world *** uses two-stream ConvNet to extract spatial and temporal information and proposes a fine-tuned deep neural ***,the transfer learning paradigm is adopted to extract varied and fixed frames while reusing object identification *** state-of-the-art pre-trained models are exploited to find the best model for spatial feature *** temporal sequence,this study uses dense optical flow following the two-stream ConvNet and Bidirectional Long Short TermMemory(BiLSTM)to capture *** state-of-the-art datasets,UCF101 and HMDB51,are used for evaluation *** addition,seven state-of-the-art optimizers are used to fine-tune the proposed network ***,this study utilizes an ensemble mechanism to aggregate spatial-temporal features using a four-stream Convolutional Neural Network(CNN),where two streams use RGB *** contrast,the other uses optical flow ***,the proposed ensemble approach using max hard voting outperforms state-ofthe-art methods with 96.30%and 90.07%accuracies on the UCF101 and HMDB51 datasets.
In the modern era of a growing population,it is arduous for humans to monitor every aspect of sports,events occurring around us,and scenarios or *** recognition of different types of sports and events has increasingly...
详细信息
In the modern era of a growing population,it is arduous for humans to monitor every aspect of sports,events occurring around us,and scenarios or *** recognition of different types of sports and events has increasingly incorporated the use of machine learning and artificial *** research focuses on detecting and recognizing events in sequential photos characterized by several factors,including the size,location,and position of people’s body parts in those pictures,and the influence around those *** approaches utilized,here are feature descriptors such as MSER(Maximally Stable Extremal Regions),SIFT(Scale-Invariant Feature Transform),and DOF(degree of freedom)between the joint points are applied to the skeleton ***,for the same purposes,other features such as BRISK(Binary Robust Invariant Scalable Keypoints),ORB(Oriented FAST and Rotated BRIEF),and HOG(Histogram of Oriented Gradients)are applied on full body or *** integration of these techniques increases the discriminative nature of characteristics retrieved in the identification process of the event,hence improving the efficiency and reliability of the entire *** extracted features are passed to the early fusion and DBscan for feature fusion and *** deep belief,network is employed for *** results demonstrate a separate experiment’s detection average recognition rate of 87%in the HMDB51 video database and 89%in the YouTube database,showing a better perspective than the current methods in sports and event identification.
Accurate identification of late mechanical activation (LMA) regions is crucial for optimal cardiac resynchronization therapy (CRT) lead implantation. However, existing approaches using cardiac magnetic resonance (CMR)...
详细信息
Fingerprint authentication is the most sophisticated method of all biometric techniques and has been thoroughly verified through various applications. Fingerprint matching has been done using several fingerprint recog...
详细信息
暂无评论