This paper presents a coding approach for achieving omnidirectional transmission of certain common signals in massive multi-input multi-output (MIMO) networks such that the received power at any direction in a cell re...
详细信息
The proposed work objective is to adapt Online social networking (OSN) is a type of interactive computer-mediated technology that allows people to share information through virtual networks. The microblogging feature ...
详细信息
The proposed work objective is to adapt Online social networking (OSN) is a type of interactive computer-mediated technology that allows people to share information through virtual networks. The microblogging feature of Twitter makes cyberspace prominent (usually accessed via the dark web). The work used the datasets and considered the Scrape Twitter Data (Tweets) in Python using the SN-Scrape module and Twitter 4j API in JAVA to extract social data based on hashtags, which is used to select and access tweets for dataset design from a profile on the Twitter platform based on locations, keywords, and hashtags. The experiments contain two datasets. The first dataset has over 1700 tweets with a focus on location as a keypoint (hacking-for-fun data, cyber-violence data, and vulnerability injector data), whereas the second dataset only comprises 370 tweets with a focus on reposting of tweet status as a keypoint. The method used is focused on a new system model for analysing Twitter data and detecting terrorist attacks. The weights of susceptible keywords are found using a ternary search by the Aho-Corasick algorithm (ACA) for conducting signature and pattern matching. The result represents the ACA used to perform signature matching for assigning weights to extracted words of tweet. ML is used to evaluate Twitter data for classifying patterns and determining the behaviour to identify if a person is a terrorist. SVM (Support Vector Machine) proved to be a more accurate classifier for predicting terrorist attacks compared to other classifiers (KNN- K-Nearest Neighbour and NB-Naïve Bayes). The 1st dataset shows the KNN-Acc. -98.38% and SVM Accuracy as 98.85%, whereas the 2nd dataset shows the KNN-Acc. -91.68% and SVM Accuracy as 93.97%. The proposed work concludes that the generated weights are classified (cyber-violence, vulnerability injector, and hacking-for-fun) for further feature classification. Machine learning (ML) [KNN and SVM] is used to predict the occurrence and
Federated learning (FL) is widely used in various fields because it can guarantee the privacy of the original data source. However, in data-sensitive fields such as Internet of Vehicles (IoV), insecure communication c...
详细信息
Federated learning (FL) is widely used in various fields because it can guarantee the privacy of the original data source. However, in data-sensitive fields such as Internet of Vehicles (IoV), insecure communication channels, semi-trusted RoadSide Unit (RSU), and collusion between vehicles and the RSU may lead to leakage of model parameters. Moreover, when aggregating data, since different vehicles usually have different computing resources, vehicles with relatively insufficient computing resources will affect the data aggregation efficiency. Therefore, in order to solve the privacy leakage problem and improve the data aggregation efficiency, this paper proposes a privacy-preserving data aggregation protocol for IoV with FL. Firstly, the protocol is designed based on methods such as shamir secret sharing scheme, pallier homomorphic encryption scheme and blinding factor protection, which can guarantee the privacy of model parameters. Secondly, the protocol improves the data aggregation efficiency by setting dynamic training time windows. Thirdly, the protocol reduces the frequent participations of Trusted Authority (TA) by optimizing the fault-tolerance mechanism. Finally, the security analysis proves that the proposed protocol is secure, and the performance analysis results also show that the proposed protocol has high computation and communication efficiency. IEEE
Ransomware is one of the most advanced malware which uses high computer resources and services to encrypt system data once it infects a system and causes large financial data losses to the organization and individuals...
详细信息
This paper discussed an efficient technique to detect near-duplicate images with higher accuracy. The proposed method improved the existing accuracy of near-duplicate image detection and classification using Haar wave...
详细信息
Tear film,the outermost layer of the eye,is a complex and dynamic structure responsible for tear *** tear film lipid layer is a vital component of the tear film that provides a smooth optical surface for the cornea an...
详细信息
Tear film,the outermost layer of the eye,is a complex and dynamic structure responsible for tear *** tear film lipid layer is a vital component of the tear film that provides a smooth optical surface for the cornea and wetting the ocular *** eye syndrome(DES)is a symptomatic disease caused by reduced tear production,poor tear quality,or excessive *** diagnosis is a difficult task due to its multifactorial *** of several clinical tests available,the evaluation of the interference patterns of the tear film lipid layer forms a potential tool for DES *** instrument known as Tearscope Plus allows the rapid assessment of the lipid layer.A grading scale composed of five categories is used to classify lipid layer *** reported work proposes the design of an automatic system employing light weight convolutional neural networks(CNN)and nature inspired optimization techniques to assess the tear film lipid layer patterns by interpreting the images acquired with the Tearscope *** designed framework achieves promising results compared with the existing state-of-the-art techniques.
The widespread impact of coronavirus disease 2019 (COVID-19) has led to a severe health crisis and loss of life affecting billions of people. Detecting COVID-19 early on and distinguishing it from other illnesses is a...
详细信息
Fake news, Fake certification, and Plagiarism are the most common issues arising these days. During this COVID-19 situation, there are a lot of rumors and fake news spreading and some of us are using fake certificatio...
详细信息
Nomadic Vehicular Cloud(NVC)is envisaged in this *** predo-minant aspects of NVC is,it moves along with the vehicle that initiates it and functions only with the resources of moving vehicles on the heavy traffic road ...
详细信息
Nomadic Vehicular Cloud(NVC)is envisaged in this *** predo-minant aspects of NVC is,it moves along with the vehicle that initiates it and functions only with the resources of moving vehicles on the heavy traffic road without relying on any of the static infrastructure and NVC decides the initiation time of container migration using cell transmission model(CTM).Containers are used in the place of Virtual Machines(VM),as containers’features are very apt to NVC’s dynamic *** specifications of 5G NR V2X PC5 interface are applied to NVC,for the feature of not relying on the network ***-days,the peak traffic on the road and the bottlenecks due to it are inevitable,which are seen here as the benefits for VC in terms of resource availability and residual in-network *** speed range of high-end vehicles poses the issue of dis-connectivity among VC participants,that results the container migration *** the entire VC participants are on the move,to maintain proximity of the containers hosted by them,estimating their movements plays a vital *** infer the vehicle movements on the road stretch and initiate the container migration prior enough to avoid the migration failure due to vehicles dynamicity,this paper proposes to apply the CTM to the container based and 5G NR V2X enabled *** simulation results show that there is a significant increase in the success rate of vehicular cloud in terms of successful container migrations.
Currently, the 4G network service has caused massive digital growth in high use. Video calling has become the go-to Internet application for many people, downloading even huge files in minutes. Everyone is looking for...
详细信息
Currently, the 4G network service has caused massive digital growth in high use. Video calling has become the go-to Internet application for many people, downloading even huge files in minutes. Everyone is looking for and buying only 4G Subscriber Identity Module (SIM)-capable mobiles. In this case, the expectation of 5G has increased in line with 2G, 3G, and 4G, where the G stands for generation, and it does not indicate Internet or Internet speed. 5G includes next-generation features that are more advanced than those available in 4G network services. The main objective of 5G is uninterrupted telecommunication service in hybrid energy storage system. This paper proposes an intelligent networking model to obtain the maximum energy efficiency and Artificial Intelligence (AI) automation of 5G networks. There is currently an issue where the signal cuts out when crossing an area with one tower and traveling to an area with another tower. The problem of “call drop”, where the call is disconnected while talking, is not present in 5G. The proposed Intelligent Computational Model (ICM) model obtained 96.31% network speed management, 90.63% battery capacity management, 92.27% network device management, 93.57% energy efficiency, and 88.41% AI automation.
暂无评论