The cellular automaton (CA), a discrete model, is gaining popularity in simulations and scientific exploration across various domains, including cryptography, error-correcting codes, VLSI design and test pattern gener...
详细信息
In this paper, a new approach for mining image association rules is presented, which involves the fine-tuned CNN model, as well as the proposed FIAR and OFIAR algorithms. Initially, the image transactional database is...
详细信息
The growing realm of blockchain technology has captivated researchers and practitioners alike with its promise of decentralized, secure, and transparent transactions. This paper presents a comprehensive survey and ana...
详细信息
Software defect prediction plays a critical role in software development and quality assurance processes. Effective defect prediction enables testers to accurately prioritize testing efforts and enhance defect detecti...
详细信息
Software defect prediction plays a critical role in software development and quality assurance processes. Effective defect prediction enables testers to accurately prioritize testing efforts and enhance defect detection efficiency. Additionally, this technology provides developers with a means to quickly identify errors, thereby improving software robustness and overall quality. However, current research in software defect prediction often faces challenges, such as relying on a single data source or failing to adequately account for the characteristics of multiple coexisting data sources. This approach may overlook the differences and potential value of various data sources, affecting the accuracy and generalization performance of prediction results. To address this issue, this study proposes a multivariate heterogeneous hybrid deep learning algorithm for defect prediction (DP-MHHDL). Initially, Abstract Syntax Tree (AST), Code Dependency Network (CDN), and code static quality metrics are extracted from source code files and used as inputs to ensure data diversity. Subsequently, for the three types of heterogeneous data, the study employs a graph convolutional network optimization model based on adjacency and spatial topologies, a Convolutional Neural Network-Bidirectional Long Short-Term Memory (CNN-BiLSTM) hybrid neural network model, and a TabNet model to extract data features. These features are then concatenated and processed through a fully connected neural network for defect prediction. Finally, the proposed framework is evaluated using ten promise defect repository projects, and performance is assessed with three metrics: F1, Area under the curve (AUC), and Matthews correlation coefficient (MCC). The experimental results demonstrate that the proposed algorithm outperforms existing methods, offering a novel solution for software defect prediction.
The Intelligent Internet of Things(IIoT) involves real-world things that communicate or interact with each other through networking technologies by collecting data from these “things” and using intelligent approache...
详细信息
The Intelligent Internet of Things(IIoT) involves real-world things that communicate or interact with each other through networking technologies by collecting data from these “things” and using intelligent approaches, such as Artificial Intelligence(AI) and machine learning, to make accurate decisions. Data science is the science of dealing with data and its relationships through intelligent approaches. Most state-of-the-art research focuses independently on either data science or IIoT, rather than exploring their integration. Therefore, to address the gap, this article provides a comprehensive survey on the advances and integration of data science with the Intelligent IoT(IIoT) system by classifying the existing IoT-based data science techniques and presenting a summary of various characteristics. The paper analyzes the data science or big data security and privacy features, including network architecture, data protection, and continuous monitoring of data, which face challenges in various IoT-based systems. Extensive insights into IoT data security, privacy, and challenges are visualized in the context of data science for IoT. In addition, this study reveals the current opportunities to enhance data science and IoT market development. The current gap and challenges faced in the integration of data science and IoT are comprehensively presented, followed by the future outlook and possible solutions.
This work proposes a novel and improved Butterfly Optimization Algorithm (BOA), known as LQBOA, to solve BOA’s inherent limitations. The LQBOA uses Lagrange interpolation and simple quadratic interpolation techniques...
详细信息
Modern electronic devices like smart bands, smartwatches, smartphones, and treadmills are widely used to track exertion metrics, also called energy expenditure, such as step counts, running, time, and distance. Howeve...
详细信息
Modern electronic devices like smart bands, smartwatches, smartphones, and treadmills are widely used to track exertion metrics, also called energy expenditure, such as step counts, running, time, and distance. However, these devices often fail to meet the needs of individuals with mobility impairments, such as wheelchair users, for whom such metrics are hard to evaluate. This research introduces a tailored model to track and quantify exertion data for manual wheelchair users. The existing Heart Intensity Metric (HIM), which relies on parameters such as heart rate, weight, age, and time (exercise duration), is adapted with a revised Activity Intensity Assessor (AIA). The model incorporates critical factors for wheelchair users, including heart rate, adjusted movement status (1 for movement and zero for no movement), and inclination status, with new parameters, such as Metabolic Equivalent of Task (MET), and wheelchair speed. The revised AIA is then adapted for the energy expenditure formula to calculate calorie-burning estimation specifically for manual wheelchair users. The revised approach minimizes false positives commonly produced by existing approaches for manual wheelchair users, especially in scenarios involving non-movement exercises like upper limb activities. Unlike prior models, the proposed AIA ensures precise energy expenditure calculations, even during stationary activities, and reflects a zero-calorie expenditure when no exercise occurs. Results are statistically verified and demonstrate that traditional formulas yield inaccurate calorie estimations for wheelchair users, while the revised model aligns better with physiological realities. This work provides a practical framework for designing electronic tools that effectively track energy expenditure/total energy (ET), also known as exertion efforts, and estimate calories burnt by manual wheelchair users. The scope of this study is limited to examining energy expenditure exclusively for manual wheelcha
Opening up data produced by the Internet of Things (IoT) and mobile devices for public utilization can maximize their economic value. Challenges remain in the trustworthiness of the data sources and the security of th...
详细信息
Recommendation systems (RS) play a vital role in various domains. However, under recent data regulations like General Data Protection Regulation (GDPR), traditional RS that rely on collecting user's interaction da...
详细信息
Internet of Things (IoT) technology quickly transformed traditional management and engagement techniques in several sectors. This work explores the trends and applications of the Internet of Things in industries, incl...
详细信息
暂无评论