With the rapid expansion of computer networks and informationtechnology, ensuring secure data transmission is increasingly vital—especially for image data, which often contains sensitive information. This research p...
详细信息
A Brain Tumors are highly dangerous illnesses that significantly reduce the life expectancy of patients. The classification of brain tumors plays a crucial role in clinical diagnosis and effective treatment. The misdi...
详细信息
A Brain Tumors are highly dangerous illnesses that significantly reduce the life expectancy of patients. The classification of brain tumors plays a crucial role in clinical diagnosis and effective treatment. The misdiagnosis of brain tumors will result in wrong medical intercession and reduce chance of survival of patients Precisely diagnosing brain tumors is of utmost importance for devising suitable treatment plans that can effectively cure and improve the quality of life for patients afflicted with this condition. To tackle this challenge, present a framework that harnesses deep convolutional layers to automatically extract crucial and resilient features from the input data. Systems that use computers and with the help of convolutional neural networks have provided huge success stories in early detection of tumors. In our framework, utilize VGG19 model combined with fuzzy logic type-2 where used fuzzy logic type-2 that applied to enhancement the images brain where Type-2 fuzzy logic better handles uncertainty in medical images, improving the interpretability of image enhancement by managing noise and subtle differences with greater precision than Type-1 fuzzy logic for MRI images often contain ambiguous or low-contrast areas where noise, lighting conditions different and greatly improve accuracy. while used the VGG19 architecture to feature extraction and classify Tumor and non- Tumor. This approach enhances the accuracy of tumors classification, aiding in the development of targeted treatment strategies for patients. The method is trained on the Br35H dataset, resulting in a training accuracy of 0.9983 % and Train loss of 0.2118 while the validation accuracy of 0.9953 % validation loss of 0.2264. This demonstrates effective pattern learning and generalization capabilities. The model achieves outstanding accuracy, with a best accuracy for the model of 0.9983 %, While the test accuracy of the model reached of 99 %, and both of sensitivity and specificity at 0.9967
With the widespread use of blockchain technology for smart contracts and decentralized applications on the Ethereum platform, the blockchain has become a cornerstone of trust in the modern financial system. However, i...
详细信息
With the widespread use of blockchain technology for smart contracts and decentralized applications on the Ethereum platform, the blockchain has become a cornerstone of trust in the modern financial system. However, its anonymity has provided new ways for Ponzi schemes to commit fraud, posing significant risks to investors. Current research still has some limitations, for example, Ponzi schemes are difficult to detect in the early stages of smart contract deployment, and data imbalance is not considered. In addition, there is room for improving the detection accuracy. To address the above issues, this paper proposes LT-SPSD (LSTM-Transformer smart Ponzi schemes detection), which is a Ponzi scheme detection method that combines Long Short-Term Memory (LSTM) and Transformer considering the time-series transaction information of smart contracts as well as the global information. Based on the verified smart contract addresses, account features, and code features are extracted to construct a feature dataset, and the SMOTE-Tomek algorithm is used to deal with the imbalanced data classification problem. By comparing our method with the other four typical detection methods in the experiment, the LT-SPSD method shows significant performance improvement in precision, recall, and F1-score. The results of the experiment confirm the efficacy of the model, which has some application value in Ethereum Ponzi scheme smart contract detection.
Improving website security to prevent malicious online activities is crucial,and CAPTCHA(Completely Automated Public Turing test to tell computers and Humans Apart)has emerged as a key strategy for distinguishing huma...
详细信息
Improving website security to prevent malicious online activities is crucial,and CAPTCHA(Completely Automated Public Turing test to tell computers and Humans Apart)has emerged as a key strategy for distinguishing human users from automated ***-based CAPTCHAs,designed to be easily decipherable by humans yet challenging for machines,are a common form of this ***,advancements in deep learning have facilitated the creation of models adept at recognizing these text-based CAPTCHAs with surprising *** our comprehensive investigation into CAPTCHA recognition,we have tailored the renowned UpDown image captioning model specifically for this *** approach innovatively combines an encoder to extract both global and local features,significantly boosting the model’s capability to identify complex details within CAPTCHA *** the decoding phase,we have adopted a refined attention mechanism,integrating enhanced visual attention with dual layers of Long Short-Term Memory(LSTM)networks to elevate CAPTCHA recognition *** rigorous testing across four varied datasets,including those from Weibo,BoC,Gregwar,and Captcha 0.3,demonstrates the versatility and effectiveness of our *** results not only highlight the efficiency of our approach but also offer profound insights into its applicability across different CAPTCHA types,contributing to a deeper understanding of CAPTCHA recognition technology.
A fuzzy visual image denoising algorithm based on Bayesian estimation is proposed to address the problems of poor denoising performance and long denoising time in traditional image denoising algorithms. First, analyse...
详细信息
As the adoption of explainable AI(XAI) continues to expand, the urgency to address its privacy implications intensifies. Despite a growing corpus of research in AI privacy and explainability, there is little attention...
详细信息
As the adoption of explainable AI(XAI) continues to expand, the urgency to address its privacy implications intensifies. Despite a growing corpus of research in AI privacy and explainability, there is little attention on privacy-preserving model explanations. This article presents the first thorough survey about privacy attacks on model explanations and their countermeasures. Our contribution to this field comprises a thorough analysis of research papers with a connected taxonomy that facilitates the categorization of privacy attacks and countermeasures based on the targeted explanations. This work also includes an initial investigation into the causes of privacy leaks. Finally, we discuss unresolved issues and prospective research directions uncovered in our analysis. This survey aims to be a valuable resource for the research community and offers clear insights for those new to this domain. To support ongoing research, we have established an online resource repository, which will be continuously updated with new and relevant findings.
The Internet of Things (IoT) integrates diverse devices into the Internet infrastructure, including sensors, meters, and wearable devices. Designing efficient IoT networks with these heterogeneous devices requires the...
详细信息
The Internet of Things (IoT) integrates diverse devices into the Internet infrastructure, including sensors, meters, and wearable devices. Designing efficient IoT networks with these heterogeneous devices requires the selection of appropriate routing protocols, which is crucial for maintaining high Quality of Service (QoS). The Internet Engineering Task Force’s Routing Over Low Power and Lossy Networks (IETF ROLL) working group developed the IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) to meet these needs. While the initial RPL standard focused on single-metric route selection, ongoing research explores enhancing RPL by incorporating multiple routing metrics and developing new Objective Functions (OFs). This paper introduces a novel Objective Function (OF), the Reliable and Secure Objective Function (RSOF), designed to enhance the reliability and trustworthiness of parent selection at both the node and link levels within IoT and RPL routing protocols. The RSOF employs an adaptive parent node selection mechanism that incorporates multiple metrics, including Residual Energy (RE), Expected Transmission Count (ETX), Extended RPL Node Trustworthiness (ERNT), and a novel metric that measures node failure rate (NFR). In this mechanism, nodes with a high NFR are excluded from the parent selection process to improve network reliability and stability. The proposed RSOF was evaluated using random and grid topologies in the Cooja Simulator, with tests conducted across small, medium, and large-scale networks to examine the impact of varying node densities. The simulation results indicate a significant improvement in network performance, particularly in terms of average latency, packet acknowledgment ratio (PAR), packet delivery ratio (PDR), and Control Message Overhead (CMO), compared to the standard Minimum Rank with Hysteresis Objective Function (MRHOF).
App reviews are crucial in influencing user decisions and providing essential feedback for developers to improve their *** the analysis of these reviews is vital for efficient review *** traditional machine learning(M...
详细信息
App reviews are crucial in influencing user decisions and providing essential feedback for developers to improve their *** the analysis of these reviews is vital for efficient review *** traditional machine learning(ML)models rely on basic word-based feature extraction,deep learning(DL)methods,enhanced with advanced word embeddings,have shown superior *** research introduces a novel aspectbased sentiment analysis(ABSA)framework to classify app reviews based on key non-functional requirements,focusing on usability factors:effectiveness,efficiency,and *** propose a hybrid DL model,combining BERT(Bidirectional Encoder Representations from Transformers)with BiLSTM(Bidirectional Long Short-Term Memory)and CNN(Convolutional Neural Networks)layers,to enhance classification *** analysis against state-of-the-art models demonstrates that our BERT-BiLSTM-CNN model achieves exceptional performance,with precision,recall,F1-score,and accuracy of 96%,87%,91%,and 94%,*** contributions of this work include a refined ABSA-based relabeling framework,the development of a highperformance classifier,and the comprehensive relabeling of the Instagram App Reviews *** advancements provide valuable insights for software developers to enhance usability and drive user-centric application development.
With the popularity of the Internet of Vehicles(IoV), a large amount of data is being generated every day. How to securely share data between the IoV operator and various value-added service providers becomes one of t...
详细信息
With the popularity of the Internet of Vehicles(IoV), a large amount of data is being generated every day. How to securely share data between the IoV operator and various value-added service providers becomes one of the critical issues. Due to its flexible and efficient fine-grained access control feature, Ciphertext-Policy Attribute-Based Encryption(CP-ABE) is suitable for data sharing in IoV. However, there are many flaws in most existing CP-ABE schemes, such as attribute privacy leakage and key misuse. This paper proposes a Traceable and Revocable CP-ABE-based Data Sharing with Partially hidden policy for IoV(TRE-DSP). A partially hidden access structure is adopted to hide sensitive user attribute values, and attribute categories are sent along with the ciphertext to effectively avoid privacy exposure. In addition, key tracking and malicious user revocation are introduced with broadcast encryption to prevent key misuse. Since the main computation task is outsourced to the cloud, the burden of the user side is relatively low. Analysis of security and performance demonstrates that TRE-DSP is more secure and practical for data sharing in IoV.
Knowledge graphs(KGs) effectively mitigate data sparsity in recommendation systems(RSs) by providing valuable auxiliary information [1]. However, traditional centralized KG-based RSs increase the risk of user privacy ...
Knowledge graphs(KGs) effectively mitigate data sparsity in recommendation systems(RSs) by providing valuable auxiliary information [1]. However, traditional centralized KG-based RSs increase the risk of user privacy *** learning(FL) enhances RS's privacy by enabling model training on decentralized data [2]. Although integrating KG and FL can address both data sparsity and privacy issues in RSs [3], several challenges persist. CH1,Each client's local model relies on a consistent global model from the server, limiting personalized deployment to endusers.
暂无评论