Parkinson's disease (PD) diagnosis involves the assessment of a variety of motor and non-motor symptoms. To accurately diagnose PD, it is necessary to differentiate its symptoms from those of other conditions. Dur...
详细信息
Optimizing therapy and rehabilitation for Parkinson's disease (PD) requires early identification and precise evaluation of the illness's course. However, there is disagreement about the best way to use gait an...
详细信息
The widespread adoption of cloud computing has underscored the critical importance of efficient resource allocation and management, particularly in task scheduling, which involves assigning tasks to computing resource...
详细信息
The widespread adoption of cloud computing has underscored the critical importance of efficient resource allocation and management, particularly in task scheduling, which involves assigning tasks to computing resources for optimized resource utilization. Several meta-heuristic algorithms have shown effectiveness in task scheduling, among which the relatively recent Willow Catkin Optimization (WCO) algorithm has demonstrated potential, albeit with apparent needs for enhanced global search capability and convergence speed. To address these limitations of WCO in cloud computing task scheduling, this paper introduces an improved version termed the Advanced Willow Catkin Optimization (AWCO) algorithm. AWCO enhances the algorithm’s performance by augmenting its global search capability through a quasi-opposition-based learning strategy and accelerating its convergence speed via sinusoidal mapping. A comprehensive evaluation utilizing the CEC2014 benchmark suite, comprising 30 test functions, demonstrates that AWCO achieves superior optimization outcomes, surpassing conventional WCO and a range of established meta-heuristics. The proposed algorithm also considers trade-offs among the cost, makespan, and load balancing objectives. Experimental results of AWCO are compared with those obtained using the other meta-heuristics, illustrating that the proposed algorithm provides superior performance in task scheduling. The method offers a robust foundation for enhancing the utilization of cloud computing resources in the domain of task scheduling within a cloud computing environment.
Preservation of the crops depends on early and accurate detection of pests on crops as they cause several diseases decreasing crop production and quality. Several deep-learning techniques have been applied to overcome...
详细信息
Preservation of the crops depends on early and accurate detection of pests on crops as they cause several diseases decreasing crop production and quality. Several deep-learning techniques have been applied to overcome the issue of pest detection on crops. We have developed the YOLOCSP-PEST model for Pest localization and classification. With the Cross Stage Partial Network (CSPNET) backbone, the proposed model is a modified version of You Only Look Once Version 7 (YOLOv7) that is intended primarily for pest localization and classification. Our proposed model gives exceptionally good results under conditions that are very challenging for any other comparable models especially conditions where we have issues with the luminance and the orientation of the images. It helps farmers working out on their crops in distant areas to determine any infestation quickly and accurately on their crops which helps in the quality and quantity of the production yield. The model has been trained and tested on 2 datasets namely the IP102 data set and a local crop data set on both of which it has shown exceptional results. It gave us a mean average precision (mAP) of 88.40% along with a precision of 85.55% and a recall of 84.25% on the IP102 dataset meanwhile giving a mAP of 97.18% on the local data set along with a recall of 94.88% and a precision of 97.50%. These findings demonstrate that the proposed model is very effective in detecting real-life scenarios and can help in the production of crops improving the yield quality and quantity at the same time.
Cloud-based Intelligence of Things is significant for Augmented Enterprise Management Systems. Data integrity auditing is challenging in the intelligence of things environment, mainly when the newer versions in the pu...
详细信息
Aspect-based sentiment analysis is one of the famous and practical subjects in natural language processing. Traditional sentiment analysis assigns a polarity to the whole text or document and does not consider the asp...
详细信息
Remote driving, an emergent technology enabling remote operations of vehicles, presents a significant challenge in transmitting large volumes of image data to a central server. This requirement outpaces the capacity o...
详细信息
Remote driving, an emergent technology enabling remote operations of vehicles, presents a significant challenge in transmitting large volumes of image data to a central server. This requirement outpaces the capacity of traditional communication methods. To tackle this, we propose a novel framework using semantic communications, through a region of interest semantic segmentation method, to reduce the communication costs by transmitting meaningful semantic information rather than bit-wise data. To solve the knowledge base inconsistencies inherent in semantic communications, we introduce a blockchain-based edge-assisted system for managing diverse and geographically varied semantic segmentation knowledge bases. This system not only ensures the security of data through the tamper-resistant nature of blockchain but also leverages edge computing for efficient management. Additionally, the implementation of blockchain sharding handles differentiated knowledge bases for various tasks, thus boosting overall blockchain efficiency. Experimental results show a great reduction in latency by sharding and an increase in model accuracy, confirming our framework's effectiveness.
In the highly competitive landscape of e-commerce advertising, maximizing Return on Advertising Spend (ROAS) is critical, yet remains inherently uncertain due to auction-based bidding dynamics and fluctuating market c...
详细信息
Fog computing is a key enabling technology of 6G systems as it provides quick and reliable computing,and data storage services which are required for several 6G *** Intelligence(AI)algorithms will be an integral part ...
详细信息
Fog computing is a key enabling technology of 6G systems as it provides quick and reliable computing,and data storage services which are required for several 6G *** Intelligence(AI)algorithms will be an integral part of 6G systems and efficient task offloading techniques using fog computing will improve their performance and *** this paper,the focus is on the scenario of Partial Offloading of a Task to Multiple Helpers(POMH)in which larger tasks are divided into smaller subtasks and processed in parallel,hence expediting task ***,using POMH presents challenges such as breaking tasks into subtasks and scaling these subtasks based on many interdependent factors to ensure that all subtasks of a task finish simultaneously,preventing resource ***,applying matching theory to POMH scenarios results in dynamic preference profiles of helping devices due to changing subtask sizes,resulting in a difficult-to-solve,externalities *** paper introduces a novel many-to-one matching-based algorithm,designed to address the externalities problem and optimize resource allocation within POMH ***,we propose a new time-efficient preference profiling technique that further enhances time optimization in POMH *** performance of the proposed technique is thoroughly evaluated in comparison to alternate baseline schemes,revealing many advantages of the proposed *** simulation findings indisputably show that the proposed matching-based offloading technique outperforms existing methodologies in the literature,yielding a remarkable 52 reduction in task latency,particularly under high workloads.
This study introduces a data-driven approach for state and output feedback control addressing the constrained output regulation problem in unknown linear discrete-time systems. Our method ensures effective tracking pe...
详细信息
This study introduces a data-driven approach for state and output feedback control addressing the constrained output regulation problem in unknown linear discrete-time systems. Our method ensures effective tracking performance while satisfying the state and input constraints, even when system matrices are not available. We first establish a sufficient condition necessary for the existence of a solution pair to the regulator equation and propose a data-based approach to obtain the feedforward and feedback control gains for state feedback control using linear programming. Furthermore, we design a refined Luenberger observer to accurately estimate the system state, while keeping the estimation error within a predefined set. By combining output regulation theory, we develop an output feedback control strategy. The stability of the closed-loop system is rigorously proved to be asymptotically stable by further leveraging the concept of λ-contractive sets.
暂无评论