Self-supervised graph representation learning has recently shown considerable promise in a range of fields, including bioinformatics and social networks. A large number of graph contrastive learning approaches have sh...
详细信息
Self-supervised graph representation learning has recently shown considerable promise in a range of fields, including bioinformatics and social networks. A large number of graph contrastive learning approaches have shown promising performance for representation learning on graphs, which train models by maximizing agreement between original graphs and their augmented views(i.e., positive views). Unfortunately, these methods usually involve pre-defined augmentation strategies based on the knowledge of human experts. Moreover, these strategies may fail to generate challenging positive views to provide sufficient supervision signals. In this paper, we present a novel approach named graph pooling contrast(GPS) to address these *** by the fact that graph pooling can adaptively coarsen the graph with the removal of redundancy, we rethink graph pooling and leverage it to automatically generate multi-scale positive views with varying emphasis on providing challenging positives and preserving semantics, i.e., strongly-augmented view and weakly-augmented view. Then, we incorporate both views into a joint contrastive learning framework with similarity learning and consistency learning, where our pooling module is adversarially trained with respect to the encoder for adversarial robustness. Experiments on twelve datasets on both graph classification and transfer learning tasks verify the superiority of the proposed method over its counterparts.
Breast Cancer (BC) remains a significant health challenge for women and is one of the leading causes of mortality worldwide. Accurate diagnosis is critical for successful therapy and increased survival rates. Recent a...
详细信息
Matrix minimization techniques that employ the nuclear norm have gained recognition for their applicability in tasks like image inpainting, clustering, classification, and reconstruction. However, they come with inher...
详细信息
Matrix minimization techniques that employ the nuclear norm have gained recognition for their applicability in tasks like image inpainting, clustering, classification, and reconstruction. However, they come with inherent biases and computational burdens, especially when used to relax the rank function, making them less effective and efficient in real-world scenarios. To address these challenges, our research focuses on generalized nonconvex rank regularization problems in robust matrix completion, low-rank representation, and robust matrix regression. We introduce innovative approaches for effective and efficient low-rank matrix learning, grounded in generalized nonconvex rank relaxations inspired by various substitutes for the ?0-norm relaxed functions. These relaxations allow us to more accurately capture low-rank structures. Our optimization strategy employs a nonconvex and multi-variable alternating direction method of multipliers, backed by rigorous theoretical analysis for complexity and *** algorithm iteratively updates blocks of variables, ensuring efficient convergence. Additionally, we incorporate the randomized singular value decomposition technique and/or other acceleration strategies to enhance the computational efficiency of our approach, particularly for large-scale constrained minimization problems. In conclusion, our experimental results across a variety of image vision-related application tasks unequivocally demonstrate the superiority of our proposed methodologies in terms of both efficacy and efficiency when compared to most other related learning methods.
Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and ...
详细信息
Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and smart transportation *** computing tackles a range of challenges,including processing,storage,bandwidth,latency,and reliability,by locally distributing secure information through end *** of endpoints,fog nodes,and back-end cloud infrastructure,it provides advanced capabilities beyond traditional cloud *** smart environments,particularly within smart city transportation systems,the abundance of devices and nodes poses significant challenges related to power consumption and system *** address the challenges of latency,energy consumption,and fault tolerance in these environments,this paper proposes a latency-aware,faulttolerant framework for resource scheduling and data management,referred to as the FORD framework,for smart cities in fog *** framework is designed to meet the demands of time-sensitive applications,such as those in smart transportation *** FORD framework incorporates latency-aware resource scheduling to optimize task execution in smart city environments,leveraging resources from both fog and cloud *** simulation-based executions,tasks are allocated to the nearest available nodes with minimum *** the event of execution failure,a fault-tolerantmechanism is employed to ensure the successful completion of *** successful execution,data is efficiently stored in the cloud data center,ensuring data integrity and reliability within the smart city ecosystem.
The essence of music is inherently multi-modal – with audio and lyrics going hand in hand. However, there is very less research done to study the intricacies of the multi-modal nature of music, and its relation with ...
详细信息
The Intelligent Internet of Things(IIoT) involves real-world things that communicate or interact with each other through networking technologies by collecting data from these “things” and using intelligent approache...
详细信息
The Intelligent Internet of Things(IIoT) involves real-world things that communicate or interact with each other through networking technologies by collecting data from these “things” and using intelligent approaches, such as Artificial Intelligence(AI) and machine learning, to make accurate decisions. Data science is the science of dealing with data and its relationships through intelligent approaches. Most state-of-the-art research focuses independently on either data science or IIoT, rather than exploring their integration. Therefore, to address the gap, this article provides a comprehensive survey on the advances and integration of data science with the Intelligent IoT(IIoT) system by classifying the existing IoT-based data science techniques and presenting a summary of various characteristics. The paper analyzes the data science or big data security and privacy features, including network architecture, data protection, and continuous monitoring of data, which face challenges in various IoT-based systems. Extensive insights into IoT data security, privacy, and challenges are visualized in the context of data science for IoT. In addition, this study reveals the current opportunities to enhance data science and IoT market development. The current gap and challenges faced in the integration of data science and IoT are comprehensively presented, followed by the future outlook and possible solutions.
The coronavirus disease 2019 (COVID-19) has posed significant challenges globally, with image classification becoming a critical tool for detecting COVID-19 from chest X-ray and CT images. Convolutional neural network...
详细信息
Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy *** key requirement for such systems is the preservation of user privacy,ensuring a seamless experience in driv...
详细信息
Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy *** key requirement for such systems is the preservation of user privacy,ensuring a seamless experience in driving,navigation,and *** privacy needs are influenced by various factors,such as data collected at different intervals,trip durations,and user *** address this,the paper proposes a Support Vector Machine(SVM)model designed to process large amounts of aggregated data and recommend privacy preserving *** model analyzes data based on user demands and interactions with service providers or neighboring *** aims to minimize privacy risks while ensuring service continuity and *** SVMmodel helps validate the system’s reliability by creating a hyperplane that distinguishes between maximum and minimum privacy *** results demonstrate the effectiveness of the proposed SVM model in enhancing both privacy and service performance.
This study examines the use of experimental designs, specifically full and fractional factorial designs, for predicting Alzheimer’s disease with fewer variables. The full factorial design systematically investigates ...
详细信息
Text classification is a quintessential and practical problem in natural language processing with applications in diverse domains such as sentiment analysis, fake news detection, medical diagnosis, and document classi...
详细信息
暂无评论