Human beings are often affected by a wide range of skin diseases,which can be attributed to genetic factors and environmental influences,such as exposure to sunshine with ultraviolet(UV)*** left untreated,these diseas...
详细信息
Human beings are often affected by a wide range of skin diseases,which can be attributed to genetic factors and environmental influences,such as exposure to sunshine with ultraviolet(UV)*** left untreated,these diseases can have severe consequences and spread,especially among *** detection is crucial to prevent their spread and improve a patient’s chances of ***,the branch of medicine dealing with skin diseases,faces challenges in accurately diagnosing these conditions due to the difficulty in identifying and distinguishing between different diseases based on their appearance,type of skin,and *** study presents a method for detecting skin diseases using Deep Learning(DL),focusing on the most common diseases affecting children in Saudi Arabia due to the high UV value in most of the year,especially in the *** method utilizes various Convolutional Neural Network(CNN)architectures to classify skin conditions such as eczema,psoriasis,and *** proposed method demonstrates high accuracy rates of 99.99%and 97%using famous and effective transfer learning models MobileNet and DenseNet121,*** illustrates the potential of DL in automating the detection of skin diseases and offers a promising approach for early diagnosis and treatment.
Effective management of electricity consumption (EC) in smart buildings (SBs) is crucial for optimizing operational efficiency, cost savings, and ensuring sustainable resource utilization. Accurate EC prediction enabl...
详细信息
The most prevalent cancer around the world is Skin cancer (SC). Clinical assessment of skin lesions is essential to evaluate the features of the disease;but it is limited by the variety of interpretations and long tim...
详细信息
Concept drift is a main security issue that has to be resolved since it presents a significant barrier to the deployment of machine learning(ML)*** to attackers’(and/or benign equivalents’)dynamic behavior changes,t...
详细信息
Concept drift is a main security issue that has to be resolved since it presents a significant barrier to the deployment of machine learning(ML)*** to attackers’(and/or benign equivalents’)dynamic behavior changes,testing data distribution frequently diverges from original training data over time,resulting in substantial model *** to their dispersed and dynamic nature,distributed denial-of-service attacks pose a danger to cybersecurity,resulting in attacks with serious consequences for users and *** paper proposes a novel design for concept drift analysis and detection of malware attacks like Distributed Denial of Service(DDOS)in the *** goal of this architecture combination is to accurately represent data and create an effective cyber security prediction *** intrusion detection system and concept drift of the network has been analyzed using secure adaptive windowing with website data authentication protocol(SAW_WDA).The network has been analyzed by authentication protocol to avoid malware *** data of network users will be collected and classified using multilayer perceptron gradient decision tree(MLPGDT)*** on the classification output,the decision for the detection of attackers and authorized users will be *** experimental results show output based on intrusion detection and concept drift analysis systems in terms of throughput,end-end delay,network security,network concept drift,and results based on classification with regard to accuracy,memory,and precision and F-1 score.
Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and ***,achieving precise segmentation remains a challenge due to various factors,in...
详细信息
Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and ***,achieving precise segmentation remains a challenge due to various factors,including scattering noise,low contrast,and limited resolution in ultrasound *** existing segmentation models have made progress,they still suffer from several limitations,such as high error rates,low generalizability,overfitting,limited feature learning capability,*** address these challenges,this paper proposes a Multi-level Relation Transformer-based U-Net(MLRT-UNet)to improve thyroid nodule *** MLRTUNet leverages a novel Relation Transformer,which processes images at multiple scales,overcoming the limitations of traditional encoding *** transformer integrates both local and global features effectively through selfattention and cross-attention units,capturing intricate relationships within the *** approach also introduces a Co-operative Transformer Fusion(CTF)module to combine multi-scale features from different encoding layers,enhancing the model’s ability to capture complex patterns in the ***,the Relation Transformer block enhances long-distance dependencies during the decoding process,improving segmentation *** results showthat the MLRT-UNet achieves high segmentation accuracy,reaching 98.2% on the Digital Database Thyroid Image(DDT)dataset,97.8% on the Thyroid Nodule 3493(TG3K)dataset,and 98.2% on the Thyroid Nodule3K(TN3K)*** findings demonstrate that the proposed method significantly enhances the accuracy of thyroid nodule segmentation,addressing the limitations of existing models.
Data protection in databases is critical for any organization,as unauthorized access or manipulation can have severe negative *** detection systems are essential for keeping databases *** in technology will lead to si...
详细信息
Data protection in databases is critical for any organization,as unauthorized access or manipulation can have severe negative *** detection systems are essential for keeping databases *** in technology will lead to significant changes in the medical field,improving healthcare services through real-time information ***,reliability and consistency still need to be *** against cyber-attacks are necessary due to the risk of unauthorized access to sensitive information and potential data ***-ruptions to data items can propagate throughout the database,making it crucial to reverse fraudulent transactions without delay,especially in the healthcare industry,where real-time data access is *** research presents a role-based access control architecture for an anomaly detection ***,the Structured Query Language(SQL)queries are stored in a new data structure called *** pentaplets allow us to maintain the correlation between SQL statements within the same transaction by employing the transaction-log entry information,thereby increasing detection accuracy,particularly for individuals within the company exhibiting unusual *** identify anomalous queries,this system employs a supervised machine learning technique called Support Vector Machine(SVM).According to experimental findings,the proposed model performed well in terms of detection accuracy,achieving 99.92%through SVM with One Hot Encoding and Principal Component Analysis(PCA).
Biomedical image processing acts as an essential part of severalmedical applications in supporting computer aided disease diagnosis. MagneticResonance Image (MRI) is a commonly utilized imaging tool used tosave glioma...
详细信息
Biomedical image processing acts as an essential part of severalmedical applications in supporting computer aided disease diagnosis. MagneticResonance Image (MRI) is a commonly utilized imaging tool used tosave glioma for clinical examination. Biomedical image segmentation plays avital role in healthcare decision making process which also helps to identifythe affected regions in the MRI. Though numerous segmentation models areavailable in the literature, it is still needed to develop effective segmentationmodels for BT. This study develops a salp swarm algorithm with multi-levelthresholding based brain tumor segmentation (SSAMLT-BTS) model. Thepresented SSAMLT-BTS model initially employs bilateral filtering based onnoise removal and skull stripping as a pre-processing phase. In addition,Otsu thresholding approach is applied to segment the biomedical imagesand the optimum threshold values are chosen by the use of SSA. Finally,active contour (AC) technique is used to identify the suspicious regions in themedical image. A comprehensive experimental analysis of the SSAMLT-BTSmodel is performed using benchmark dataset and the outcomes are inspectedin many aspects. The simulation outcomes reported the improved outcomesof the SSAMLT-BTS model over recent approaches with maximum accuracyof 95.95%.
Malware attacks on Windows machines pose significant cybersecurity threats,necessitating effective detection and prevention *** machine learning classifiers have emerged as promising tools for malware ***,there remain...
详细信息
Malware attacks on Windows machines pose significant cybersecurity threats,necessitating effective detection and prevention *** machine learning classifiers have emerged as promising tools for malware ***,there remains a need for comprehensive studies that compare the performance of different classifiers specifically for Windows malware *** this gap can provide valuable insights for enhancing cybersecurity *** numerous studies have explored malware detection using machine learning techniques,there is a lack of systematic comparison of supervised classifiers for Windows malware *** the relative effectiveness of these classifiers can inform the selection of optimal detection methods and improve overall security *** study aims to bridge the research gap by conducting a comparative analysis of supervised machine learning classifiers for detecting malware on Windows *** objectives include Investigating the performance of various classifiers,such as Gaussian Naïve Bayes,K Nearest Neighbors(KNN),Stochastic Gradient Descent Classifier(SGDC),and Decision Tree,in detecting Windows *** the accuracy,efficiency,and suitability of each classifier for real-world malware detection *** the strengths and limitations of different classifiers to provide insights for cybersecurity practitioners and *** recommendations for selecting the most effective classifier for Windows malware detection based on empirical *** study employs a structured methodology consisting of several phases:exploratory data analysis,data preprocessing,model training,and *** data analysis involves understanding the dataset’s characteristics and identifying preprocessing *** preprocessing includes cleaning,feature encoding,dimensionality reduction,and optimization to prepare the data for *** training utilizes various
Machine Learning (ML), a subfield of Artificial Intelligence (AI), has been used successfully in the healthcare domain for disease diagnosis. Thyroid disorders and diabetes are two of the most prevalent and interconne...
详细信息
With the development of communication systems, modulation methods are becoming more and more diverse. Among them, quadrature spatial modulation(QSM) is considered as one method with less capacity and high efficiency. ...
详细信息
With the development of communication systems, modulation methods are becoming more and more diverse. Among them, quadrature spatial modulation(QSM) is considered as one method with less capacity and high efficiency. In QSM, the traditional signal detection methods sometimes are unable to meet the actual requirement of low complexity of the system. Therefore, this paper proposes a signal detection scheme for QSM systems using deep learning to solve the complexity problem. Results from the simulations show that the bit error rate performance of the proposed deep learning-based detector is better than that of the zero-forcing(ZF) and minimum mean square error(MMSE) detectors, and similar to the maximum likelihood(ML) detector. Moreover, the proposed method requires less processing time than ZF, MMSE,and ML.
暂无评论