咨询与建议

限定检索结果

文献类型

  • 292 篇 会议
  • 144 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 439 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 295 篇 工学
    • 218 篇 计算机科学与技术...
    • 188 篇 软件工程
    • 80 篇 信息与通信工程
    • 32 篇 生物工程
    • 21 篇 控制科学与工程
    • 17 篇 仪器科学与技术
    • 16 篇 生物医学工程(可授...
    • 14 篇 化学工程与技术
    • 13 篇 电子科学与技术(可...
    • 9 篇 机械工程
    • 8 篇 电气工程
    • 6 篇 光学工程
    • 5 篇 材料科学与工程(可...
    • 4 篇 动力工程及工程热...
  • 168 篇 理学
    • 95 篇 物理学
    • 67 篇 数学
    • 37 篇 生物学
    • 37 篇 统计学(可授理学、...
    • 14 篇 化学
    • 13 篇 系统科学
  • 70 篇 管理学
    • 50 篇 图书情报与档案管...
    • 21 篇 管理科学与工程(可...
    • 7 篇 工商管理
  • 11 篇 医学
    • 11 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 7 篇 药学(可授医学、理...
  • 10 篇 文学
    • 8 篇 外国语言文学
    • 7 篇 中国语言文学
  • 9 篇 法学
    • 8 篇 社会学
  • 7 篇 农学
    • 5 篇 作物学
  • 2 篇 经济学
  • 2 篇 教育学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 49 篇 speech recogniti...
  • 24 篇 speech
  • 23 篇 training
  • 21 篇 hidden markov mo...
  • 21 篇 speech processin...
  • 14 篇 acoustics
  • 13 篇 decoding
  • 13 篇 natural language...
  • 12 篇 computational mo...
  • 11 篇 signal processin...
  • 9 篇 computational li...
  • 9 篇 databases
  • 9 篇 feature extracti...
  • 8 篇 natural language...
  • 8 篇 syntactics
  • 8 篇 automatic speech...
  • 7 篇 training data
  • 7 篇 testing
  • 7 篇 speaker recognit...
  • 6 篇 machine translat...

机构

  • 27 篇 department of co...
  • 24 篇 center for langu...
  • 21 篇 department of co...
  • 18 篇 department of co...
  • 16 篇 mainlp center fo...
  • 12 篇 munich
  • 11 篇 department of co...
  • 9 篇 center for infor...
  • 9 篇 department of co...
  • 9 篇 center for speec...
  • 7 篇 department of co...
  • 7 篇 human language t...
  • 7 篇 department of el...
  • 7 篇 center for langu...
  • 7 篇 center for langu...
  • 6 篇 center for speec...
  • 6 篇 center for infor...
  • 6 篇 speechlab depart...
  • 6 篇 center for langu...
  • 6 篇 national enginee...

作者

  • 21 篇 plank barbara
  • 18 篇 zheng thomas fan...
  • 18 篇 yarowsky david
  • 17 篇 thomas fang zhen...
  • 15 篇 van der goot rob
  • 14 篇 khudanpur sanjee...
  • 12 篇 wang dong
  • 12 篇 sanjeev khudanpu...
  • 11 篇 callison-burch c...
  • 11 篇 eisner jason
  • 10 篇 lei xie
  • 9 篇 schütze hinrich
  • 9 篇 koehn philipp
  • 9 篇 cotterell ryan
  • 8 篇 du xiaojiang
  • 8 篇 smith noah a.
  • 8 篇 zhu liehuang
  • 8 篇 watanabe shinji
  • 7 篇 li zhifei
  • 7 篇 dredze mark

语言

  • 400 篇 英文
  • 37 篇 其他
  • 4 篇 中文
检索条件"机构=Department of Computer Science/Center for Language and Speech Processing"
439 条 记 录,以下是111-120 订阅
排序:
Wake Word Detection with Streaming Transformers
Wake Word Detection with Streaming Transformers
收藏 引用
IEEE International Conference on Acoustics, speech and Signal processing
作者: Yiming Wang Hang Lv Daniel Povey Lei Xie Sanjeev Khudanpur Center for Language and Speech Processing Johns Hopkins University Baltimore MD USA School of Computer Science Northwestern Polytechnical University Xi’an China Xiaomi Corporation Beijing China Human Language Technology Center of Excellence Johns Hopkins University Baltimore MD USA
Modern wake word detection systems usually rely on neural networks for acoustic modeling. Transformers has recently shown superior performance over LSTM and convolutional networks in various sequence modeling tasks wi... 详细信息
来源: 评论
Weakly-Supervised Depression Detection in speech Through Self-Learning Based Label Correction
IEEE Transactions on Audio, Speech and Language Processing
收藏 引用
IEEE Transactions on Audio, speech and language processing 2025年 33卷 748-758页
作者: Yanfei Sun Yuanyuan Zhou Xinzhou Xu Jin Qi Feiyi Xu Zhao Ren Björn W. Schuller School of Internet of Things Nanjing University of Posts and Telecommunications Nanjing China Wuxi University Wuxi China School of Computer Science Nanjing University of Posts and Telecommunications Nanjing China Signal Processing and Speech Communication Laboratory Graz University of Technology Graz Austria Key Laboratory of Modern Acoustics MOE Nanjing University Nanjing China Cognitive Systems Lab University of Bremen Bremen Germany Chair of Health Informatics Technische Universität München (TUM) München Germany Munich Data Science Institute Munich Germany Munich Center for Machine Learning Munich Germany GLAM – the Group on Language Audio & Music Imperial College London London U.K.
Automated Depression Detection (ADD) in speech aims to automatically estimate one's depressive attributes through artificial intelligence tools towards spoken signals. Nevertheless, existing speech-based ADD works... 详细信息
来源: 评论
LocalViT: Analyzing Locality in Vision Transformers
LocalViT: Analyzing Locality in Vision Transformers
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
作者: Yawei Li Kai Zhang Jiezhang Cao Radu Timofte Michele Magno Luca Benini Luc Van Goo Computer Vision Lab D-ITET ETH Zurich Switzerland Center for Artificial Intelligence and Data Science (CAIDAS) University of Wurzburg Germany Center for Project-Based Learning D-ITET ETH Zurich Switzerland Integrated Systems Laboratory D-ITET ETH Zurich Switzerland Department of Electrical Electronic and Information Engineering University of Bologna Italy Processing Speech and Images (PSI) KU Leuven Belgium
The aim of this paper is to study the influence of locality mechanisms in vision transformers. Transformers originated from machine translation and are particularly good at modelling long-range dependencies within a l...
来源: 评论
SUMMARY ON THE ICASSP 2022 MULTI-CHANNEL MULTI-PARTY MEETING TRANSCRIPTION GRAND CHALLENGE
arXiv
收藏 引用
arXiv 2022年
作者: Yu, Fan Zhang, Shiliang Guo, Pengcheng Fu, Yihui Du, Zhihao Zheng, Siqi Huang, Weilong Xie, Lei Tan, Zheng-Hua Wang, DeLiang Qian, Yanmin Lee, Kong Aik Yan, Zhijie Ma, Bin Xu, Xin Bu, Hui Speech Lab Alibaba Group China Speech Lab Alibaba Group Singapore AISHELL Foundation China Beijing Shell Shell Technology Co. Ltd. Beijing China Department of Electronic Systems Aalborg University Aalborg Denmark Department of Computer Science and Engineering Center for Cognitive and Brain Sciences The Ohio State University United States SpeechLab Department of Computer Science and Engineering Shanghai Jiao Tong University China Aural and Language Intelligence Department Institute for Infocomm Research A*STAR Singapore
The ICASSP 2022 Multi-channel Multi-party Meeting Transcription Grand Challenge (M2MeT) focuses on one of the most valuable and the most challenging scenarios of speech technologies. The M2MeT challenge has particular... 详细信息
来源: 评论
Robust Deep Learning Framework for Predicting Respiratory Anomalies and Diseases  42
Robust Deep Learning Framework for Predicting Respiratory An...
收藏 引用
42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020
作者: Pham, Lam McLoughlin, Ian Phan, Huy Tran, Minh Nguyen, Truc Palaniappan, Ramaswamy University of Kent School of Computing Medway Kent United Kingdom University of Science and Technology of China National Engineering Laboratory for Speech and Language Information Processing Hefei China Queen Mary University School of Electronic Engineering and Computer Science London United Kingdom University of Oxford Nuffield Department of Anaesthesia United Kingdom Graz University of Technology Signal Processing and Speech Communication Lab Austria
This paper presents a robust deep learning framework developed to detect respiratory diseases from recordings of respiratory sounds. The complete detection process firstly involves front end feature extraction where r... 详细信息
来源: 评论
Overview of the Tenth Dialog System Technology Challenge: DSTC10
收藏 引用
IEEE/ACM Transactions on Audio speech and language processing 2024年 32卷 765-778页
作者: Yoshino, Koichiro Chen, Yun-Nung Crook, Paul Kottur, Satwik Li, Jinchao Hedayatnia, Behnam Moon, Seungwhan Fei, Zhengcong Li, Zekang Zhang, Jinchao Feng, Yang Zhou, Jie Kim, Seokhwan Liu, Yang Jin, Di Papangelis, Alexandros Gopalakrishnan, Karthik Hakkani-Tur, Dilek Damavandi, Babak Geramifard, Alborz Hori, Chiori Shah, Ankit Zhang, Chen Li, Haizhou Sedoc, Joao D'haro, Luis F. Banchs, Rafael Rudnicky, Alexander Guardian Robot Project R-IH RIKEN 2-2-2 Hikaridai Seika Shoraku619-0288 Japan Information Science Nara Institute of Science and Technology Ikoma630-0101 Japan Computer Science and Information Engineering National Taiwan University Taipei10617 Taiwan Inc. Palo AltoCA95054 United States Alexa AI *** Inc. SunnyvaleCA94089 United States Meta Seattle RedmondWA98052 United States Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Tencent AI Lab Beijing Beijing China Kexueyuan South Road Zhongguancun Beijing100190 China Beijing 100190 China Alexa AI *** Inc. SunnyvaleCA United States 1120 Enterprise way Sunnyvale94089 United States *** Inc. SeattleWA United States Menlo Park CA United States Audio and Speech Group Mitsubishi Electric Research Laboratories CambridgeMA02139-1955 United States Carnegie Mellon University Department of Language and Information Technologies or just Carnegie Mellon University Pittsburgh United States National University of Singapore Singapore Singapore Department of Electrical and Computer Engineering National University of Singapore Singapore Singapore Shenzhen Research Institute of Big Data School of Data Science Chinese University of Hong Kong Shenzhen518172 China New York University New YorkNY United States ETSI de Telecomunicacion - Speech Technology and Machine Learning Group Universidad Politecnica de Madrid Ciudad Universitaria Madrid28040 Spain Nanyang Technological University Singapore Singapore Carnegie Mellon University PittsburghPA United States
This article introduces the Tenth Dialog System Technology Challenge (DSTC-10). This edition of the DSTC focuses on applying end-to-end dialog technologies for five distinct tasks in dialog systems, namely 1. Incorpor... 详细信息
来源: 评论
Gap detection responses modelled using the Hill equation in adults with well-controlled HIV
收藏 引用
International Audiology 2023年 第5期62卷 383-392页
作者: Christopher E. Niemczak Christopher Cox Gevorg Grigoryan Gayle Springer Abigail M. Fellows Peter Torre III Howard J. Hoffman Jay C. Buckey Michael W. Plankey a Department of Biomedical Research Geisel School of Medicine at Dartmouth Hanover NH USA b Department of Epidemiology Johns Hopkins University Bloomberg School of Public Health Baltimore MD USA c Department of Biological and Computer Science Dartmouth College Hanover NH USA d School of Speech Language and Hearing Sciences San Diego State University San Diego CA USA e National Institute on Deafness and Other Communication Disorders Bethesda MD USA f Department of Medicine Division of General Internal Medicine Georgetown University Medical Center Washington DC USA
ObjectiveThis study’s objective was determining whether gap detection deficits are present in a longstanding cohort of people living with HIV (PLWH) compared to those living without HIV (PLWOH) using a new gap detect... 详细信息
来源: 评论
Attack on practical speaker verification system using universal adversarial perturbations
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Weiyi Zhao, Shuning Liu, Le Li, Jianmin Cheng, Xingliang Zheng, Thomas Fang Hu, Xiaolin Department of Computer Science and Technology BNRist Tsinghua University China Center for Speech and Language Technologies BNRist Tsinghua University China Beijing d-Ear Technologies Co. Ltd.
In authentication scenarios, applications of practical speaker verification systems usually require a person to read a dynamic authentication text. Previous studies played an audio adversarial example as a digital sig... 详细信息
来源: 评论
Deep generative LDA
arXiv
收藏 引用
arXiv 2020年
作者: Cai, Yunqi Wang, Dong Department of Computer Science and Technology Center for Speech and Language Technologies Tsinghua University Beijing China
Linear discriminant analysis (LDA) is a popular tool for classification and dimension reduction. Limited by its linear form and the underlying Gaussian assumption, however, LDA is not applicable in situations where th... 详细信息
来源: 评论
Analyzing political parody in social media
arXiv
收藏 引用
arXiv 2020年
作者: Maronikolakis, Antonis Villegas, Danae Sánchez Preoţiuc-Pietro, Daniel Aletras, Nikolaos Center for Information and Language Processing Lmu Munich Computer Science Department University of Sheffield Bloomberg
Parody is a figurative device used to imitate an entity for comedic or critical purposes and represents a widespread phenomenon in so-cial media through many popular parody ac-counts. In this paper, we present the fir... 详细信息
来源: 评论