咨询与建议

限定检索结果

文献类型

  • 293 篇 会议
  • 144 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 440 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 295 篇 工学
    • 220 篇 计算机科学与技术...
    • 189 篇 软件工程
    • 80 篇 信息与通信工程
    • 32 篇 生物工程
    • 21 篇 控制科学与工程
    • 17 篇 仪器科学与技术
    • 16 篇 生物医学工程(可授...
    • 14 篇 化学工程与技术
    • 13 篇 电子科学与技术(可...
    • 9 篇 机械工程
    • 8 篇 电气工程
    • 6 篇 光学工程
    • 5 篇 材料科学与工程(可...
    • 4 篇 动力工程及工程热...
  • 169 篇 理学
    • 95 篇 物理学
    • 67 篇 数学
    • 38 篇 生物学
    • 37 篇 统计学(可授理学、...
    • 14 篇 化学
    • 13 篇 系统科学
  • 72 篇 管理学
    • 50 篇 图书情报与档案管...
    • 21 篇 管理科学与工程(可...
    • 7 篇 工商管理
  • 13 篇 医学
    • 11 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 7 篇 药学(可授医学、理...
  • 10 篇 文学
    • 8 篇 外国语言文学
    • 7 篇 中国语言文学
  • 9 篇 法学
    • 8 篇 社会学
  • 8 篇 农学
    • 5 篇 作物学
  • 2 篇 经济学
  • 2 篇 教育学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 49 篇 speech recogniti...
  • 24 篇 speech
  • 23 篇 training
  • 21 篇 hidden markov mo...
  • 21 篇 speech processin...
  • 14 篇 acoustics
  • 14 篇 natural language...
  • 13 篇 decoding
  • 12 篇 computational mo...
  • 11 篇 signal processin...
  • 9 篇 computational li...
  • 9 篇 databases
  • 9 篇 feature extracti...
  • 8 篇 natural language...
  • 8 篇 syntactics
  • 8 篇 automatic speech...
  • 7 篇 training data
  • 7 篇 testing
  • 7 篇 speaker recognit...
  • 6 篇 machine translat...

机构

  • 27 篇 department of co...
  • 25 篇 center for langu...
  • 21 篇 department of co...
  • 18 篇 department of co...
  • 16 篇 mainlp center fo...
  • 12 篇 munich
  • 11 篇 department of co...
  • 9 篇 center for infor...
  • 9 篇 department of co...
  • 9 篇 center for speec...
  • 7 篇 department of co...
  • 7 篇 human language t...
  • 7 篇 department of el...
  • 7 篇 center for langu...
  • 7 篇 center for langu...
  • 6 篇 center for speec...
  • 6 篇 center for infor...
  • 6 篇 speechlab depart...
  • 6 篇 center for langu...
  • 6 篇 national enginee...

作者

  • 21 篇 plank barbara
  • 18 篇 zheng thomas fan...
  • 18 篇 yarowsky david
  • 17 篇 thomas fang zhen...
  • 15 篇 van der goot rob
  • 14 篇 khudanpur sanjee...
  • 12 篇 wang dong
  • 12 篇 sanjeev khudanpu...
  • 11 篇 callison-burch c...
  • 11 篇 eisner jason
  • 10 篇 lei xie
  • 9 篇 schütze hinrich
  • 9 篇 koehn philipp
  • 9 篇 cotterell ryan
  • 8 篇 du xiaojiang
  • 8 篇 smith noah a.
  • 8 篇 zhu liehuang
  • 8 篇 watanabe shinji
  • 7 篇 li zhifei
  • 7 篇 dredze mark

语言

  • 384 篇 英文
  • 54 篇 其他
  • 5 篇 中文
检索条件"机构=Department of Computer Science/Center for Language and Speech Processing"
440 条 记 录,以下是221-230 订阅
排序:
Enhancement and Analysis of Conversational speech: JSALT 2017
Enhancement and Analysis of Conversational Speech: JSALT 201...
收藏 引用
IEEE International Conference on Acoustics, speech and Signal processing
作者: Neville Ryanta Elika Bergelson Kenneth Church Alejandrina Cristia Jun Du Sriram Ganapathy Sanjeev Khudanpur Diana Kowalski Mahesh Krishnamoorthy Rajat Kulshreshta Mark Liberman Yu-Ding Lu Matthew Maciejewski Florian Metze Jan Profant Lei Sun Yu Tsao Zhou Yu Linguistic Data Consortium University of Pennsylvania Philadelphia PA USA Department of Psychology and Neuroscience Duke University Durham NC USA IBM Yorktown Heights NY USA Laboratoire de Sciences Cognitives et Psycholinguistique ENS Paris France University of Science and Technology of China Hefei China Electrical Engineering Department Indian Institute of Science Bangalore India Center for Language and Speech Processing Johns Hopkins University Baltimore MD USA University of Illinois at Urbana-Champaign Champaign IL USA Apple Cupertino CA USA Language Technologies Institute Carnegie Mellon University Pittsburgh PA USA Research Center for Information Technology Innovation Academia Sinica Taipei Taiwan Brno University of Technology Brno Czech Republic Department of Computer Science University of California Davis Davis CA USA
Automatic speech recognition is more and more widely and effectively used. Nevertheless, in some automatic speech analysis tasks the state of the art is surprisingly poor. One of these is "diarization", the ... 详细信息
来源: 评论
Phone-aware neural language identification
Phone-aware neural language identification
收藏 引用
Oriental COCOSDA International Conference on speech Database and Assessments
作者: Zhiyuan Tang Dong Wang Yixiang Chen Ying Shi Lantian Li Center for Speech and Language Technologies RIIT Tsinghua University Tsinghua National Laboratory for Information Science and Technology Tsinghua University Department of Computer Science Tsinghua University
Pure acoustic neural models, particularly the LSTM-RNN model, have shown great potential in language identification (LID). However, the phonetic information has been largely overlooked by most of existing neural LID m... 详细信息
来源: 评论
Quick and Reliable Document Alignment via TF/IDF-weighted Cosine Distance  1
Quick and Reliable Document Alignment via TF/IDF-weighted Co...
收藏 引用
1st Conference on Machine Translation, WMT 2016, held at the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016
作者: Buck, Christian Koehn, Philipp University of Edinburgh Edinburgh United Kingdom Center for Language and Speech Processing Department of Computer Science Johns Hopkins University BaltimoreMD United States
This work describes our submission to the WMT16 Bilingual Document Alignment task. We show that a very simple distance metric, namely Cosine distance of tf/idf weighted document vectors provides a quick and reliable w... 详细信息
来源: 评论
Sentential paraphrasing as black-box machine translation
Sentential paraphrasing as black-box machine translation
收藏 引用
2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human language Technologies, NAACL-HLT 2016
作者: Napoles, Courtney Callison-Burch, Chris Post, Matt Center for Language and Speech Processing Johns Hopkins University United States Computer and Information Science Department University of Pennsylvania United States Human Language Technology Center of Excellence Johns Hopkins University United States
We present a simple, prepackaged solution to generating paraphrases of English sentences. We use the Paraphrase Database (PPDB) for monolingual sentence rewriting and provide machine translation language packs: Prepac... 详细信息
来源: 评论
A Hybrid Method of Domain Lexicon Construction for Opinion Targets Extraction Using Syntax and Semantics
收藏 引用
Journal of computer science & Technology 2016年 第3期31卷 595-603页
作者: Chun Liao Chong Feng Sen Yang He-Yan Huang Department of Computer Science and Technology Beijing Institute of Technology Beijing 100081 China Beijing Engineering Research Center of High Volume Language Information Processing and Cloud Computing Applications Beijing Institute of Technology Beijing 100081 China
Opinion targets extraction of Chinese microblogs plays an important role in opinion mining. There has been a significant progress in this area recently, especially the method based on conditional random field (CRF).... 详细信息
来源: 评论
Automatic Construction of Morphologically Motivated Translation Models for Highly Inflected, Low-Resource languages  12
Automatic Construction of Morphologically Motivated Translat...
收藏 引用
12th Conference of the Association for Machine Translation in the Americas, AMTA 2016
作者: Hewitt, John Post, Matt Yarowsky, David Department of Computer and Information Science University of Pennsylvania PhiladelphiaPA19104 United States Center for Language and Speech Processing Johns Hopkins University BaltimoreMD21211 United States
Statistical Machine Translation (SMT) of highly inflected, low-resource languages suffers from the problem of low bitext availability, which is exacerbated by large inflectional paradigms. When translating into Englis... 详细信息
来源: 评论
Phonetic temporal neural model for language identification
arXiv
收藏 引用
arXiv 2017年
作者: Tang, Zhiyuan Wang, Dong Chen, Yixiang Li, Lantian Abel, Andrew Chengdu Institute of Computer Applications Chinese Academy of Sciences and University of Chinese Academy of Sciences Beijing100049 China Center for Speech and Language Technologies Tsinghua University Beijing100084 China Tsinghua National Laboratory for Information Science and Technology and the Center for Speech and Language Technologies Tsinghua University Beijing100084 China Department of Computer Science and Software Engineering Xi'an Jiaotong-Liverpool University Suzhou215123 China
Deep neural models, particularly the LSTM-RNN model, have shown great potential for language identification (LID). However, the use of phonetic information has been largely overlooked by most existing neural LID metho... 详细信息
来源: 评论
Neural morphological analysis: Encoding-decoding canonical segments
Neural morphological analysis: Encoding-decoding canonical s...
收藏 引用
2016 Conference on Empirical Methods in Natural language processing, EMNLP 2016
作者: Kann, Katharina Cotterell, Ryan Schütze, Hinrich Center for Information and Language Processing LMU Munich Germany Department of Computer Science Johns Hopkins University United States
Canonical morphological segmentation aims to divide words into a sequence of standardized segments. In this work, we propose a character-based neural encoder-decoder model for this task. Additionally, we extend our mo... 详细信息
来源: 评论
A joint model of orthography and morphological segmentation  15
A joint model of orthography and morphological segmentation
收藏 引用
15th Conference of the North American Chapter of the Association for Computational Linguistics: Human language Technologies, NAACL HLT 2016
作者: Cotterell, Ryan Vieira, Tim Schütze, Hinrich Department of Computer Science Johns Hopkins University United States Center for Information and Language Processing LMU Munich Germany
We present a model of morphological segmentation that jointly learns to segment and restore orthographic changes, e.g., funniest ⟼ fun-y-est. We term this form of analysis canonical segmentation and contrast it with t... 详细信息
来源: 评论
Speaker segmentation using deep speaker vectors for fast speaker change scenarios
Speaker segmentation using deep speaker vectors for fast spe...
收藏 引用
IEEE International Conference on Acoustics, speech and Signal processing
作者: Renyu Wang Mingliang Gu Lantian Li Mingxing Xu Thoms Fang Zheng School of Linguistic Science Jiangsu Normal University Xuzhou 221116 China Center for Speech and Language Technologies Division of Technical Innovation and Development Tsinghua National Laboratory for Information Science and Technology Research Institute of Information Technology Department of Computer Science and Technology
A novel speaker segmentation approach based on deep neural network is proposed and investigated. This approach uses deep speaker vectors (d-vectors) to represent speaker characteristics and to find speaker change poin... 详细信息
来源: 评论