Audio Deepfakes, which are highly realistic fake audio recordings driven by AI tools that clone human voices, With Advancements in Text-Based Speech Generation (TTS) and Vocal Conversion (VC) technologies have enabled...
详细信息
Audio Deepfakes, which are highly realistic fake audio recordings driven by AI tools that clone human voices, With Advancements in Text-Based Speech Generation (TTS) and Vocal Conversion (VC) technologies have enabled it easier to create realistic synthetic and imitative speech, making audio Deepfakes a common and potentially dangerous form of deception. Well-known people, like politicians and celebrities, are often targeted. They get tricked into saying controversial things in fake recordings, causing trouble on social media. Even kids’ voices are cloned to scam parents into ransom payments, etc. Therefore, developing effective algorithms to distinguish Deepfake audio from real audio is critical to preventing such frauds. Various Machine learning (ML) and Deep learning (DL) techniques have been created to identify audio Deepfakes. However, most of these solutions are trained on datasets in English, Portuguese, French, and Spanish, expressing concerns regarding their correctness for other languages. The main goal of the research presented in this paper is to evaluate the effectiveness of deep learning neural networks in detecting audio Deepfakes in the Urdu language. Since there’s no suitable dataset of Urdu audio available for this purpose, we created our own dataset (URFV) utilizing both genuine and fake audio recordings. The Urdu Original/real audio recordings were gathered from random youtube podcasts and generated as Deepfake audios using the RVC model. Our dataset has three versions with clips of 5, 10, and 15 seconds. We have built various deep learning neural networks like (RNN+LSTM, CNN+attention, TCN, CNN+RNN) to detect Deepfake audio made through imitation or synthetic techniques. The proposed approach extracts Mel-Frequency-Cepstral-Coefficients (MFCC) features from the audios in the dataset. When tested and evaluated, Our models’ accuracy across datasets was noteworthy. 97.78% (5s), 98.89% (10s), and 98.33% (15s) were remarkable results for the RNN+LSTM
With the tremendous advancement in machine learning and deep learning, organizations are using numerous algorithms for analyzing the huge amount of data to come up with insights which contains meaningful out comes. Es...
详细信息
In our day-To-day life, emotion plays an essential role in decision-making and human interaction. For many years, psychologists have been trying to develop many emotional models to explain the human emotional or affec...
详细信息
With advancements in technology, the study of data hiding (DH) in images has become more and more important. In this paper, we introduce a novel data hiding scheme that employs a voting strategy to predict pixels base...
详细信息
Distributed Denial of Service (DDoS) attacks pose a significant threat to network infrastructures, leading to service disruptions and potential financial losses. In this study, we propose an ensemble-based approach fo...
详细信息
Nowadays, Cloud Computing has attracted a lot of interest from both individual users and organization. However, cloud computing applications face certain security issues, such as data integrity, user privacy, and serv...
详细信息
Repetition is the most prominent type of dysfluency in stuttered speech. Spectral energy, entropy, ZCR, and centroid are extracted using wavelet packet transformation, and similarity between these features for adjacen...
详细信息
The performance of the cloud-based systems is directly associated with the resource utilization. The maximum resource utilization indicates the high performance of cloud computing. Further, effective task scheduling i...
详细信息
The Internet of things(IoT)is a wireless network designed to perform specific tasks and plays a crucial role in various fields such as environmental monitoring,surveillance,and *** address the limitations imposed by i...
详细信息
The Internet of things(IoT)is a wireless network designed to perform specific tasks and plays a crucial role in various fields such as environmental monitoring,surveillance,and *** address the limitations imposed by inadequate resources,energy,and network scalability,this type of network relies heavily on data aggregation and clustering *** various conventional studies have aimed to enhance the lifespan of a network through robust systems,they do not always provide optimal efficiency for real-time *** paper presents an approach based on state-of-the-art machine-learning *** this study,we employed a novel approach that combines an extended version of principal component analysis(PCA)and a reinforcement learning algorithm to achieve efficient clustering and data *** primary objectives of this study are to enhance the service life of a network,reduce energy usage,and improve data aggregation *** evaluated the proposed methodology using data collected from sensors deployed in agricultural fields for crop *** proposed approach(PQL)was compared to previous studies that utilized adaptive Q-learning(AQL)and regional energy-aware clustering(REAC).Our study outperformed in terms of both network longevity and energy consumption and established a fault-tolerant network.
Image caption-generating systems aim to deliver accurate, coherent, and useful captions. This includes identifying the scene, items, relationships, and attributes of the image's objects. Due to constraints in usin...
详细信息
暂无评论