Matrix minimization techniques that employ the nuclear norm have gained recognition for their applicability in tasks like image inpainting, clustering, classification, and reconstruction. However, they come with inher...
详细信息
Matrix minimization techniques that employ the nuclear norm have gained recognition for their applicability in tasks like image inpainting, clustering, classification, and reconstruction. However, they come with inherent biases and computational burdens, especially when used to relax the rank function, making them less effective and efficient in real-world scenarios. To address these challenges, our research focuses on generalized nonconvex rank regularization problems in robust matrix completion, low-rank representation, and robust matrix regression. We introduce innovative approaches for effective and efficient low-rank matrix learning, grounded in generalized nonconvex rank relaxations inspired by various substitutes for the ?0-norm relaxed functions. These relaxations allow us to more accurately capture low-rank structures. Our optimization strategy employs a nonconvex and multi-variable alternating direction method of multipliers, backed by rigorous theoretical analysis for complexity and *** algorithm iteratively updates blocks of variables, ensuring efficient convergence. Additionally, we incorporate the randomized singular value decomposition technique and/or other acceleration strategies to enhance the computational efficiency of our approach, particularly for large-scale constrained minimization problems. In conclusion, our experimental results across a variety of image vision-related application tasks unequivocally demonstrate the superiority of our proposed methodologies in terms of both efficacy and efficiency when compared to most other related learning methods.
The authors consider the property of detectability of discrete event systems in the presence of sensor attacks in the context of *** authors model the system using an automaton and study the general notion of detectab...
详细信息
The authors consider the property of detectability of discrete event systems in the presence of sensor attacks in the context of *** authors model the system using an automaton and study the general notion of detectability where a given set of state pairs needs to be(eventually or periodically)distinguished in any estimate of the state of the *** authors adopt the ALTER sensor attack model from previous work and formulate four notions of CA-detectability in the context of this attack model based on the following attributes:strong or weak;eventual or *** authors present verification methods for strong CA-detectability and weak *** authors present definitions of strong and weak periodic CA-detectability that are based on the construction of a verifier automaton called the augmented *** development also resulted in relaxing assumptions in prior results on D-detectability,which is a special case of CA-detectability.
Building heating, ventilating, and air conditioning(HVAC) systems have one of the largest energy footprint worldwide, which necessitates the design of intelligent control algorithms that improve the energy utilization...
详细信息
Building heating, ventilating, and air conditioning(HVAC) systems have one of the largest energy footprint worldwide, which necessitates the design of intelligent control algorithms that improve the energy utilization while still providing thermal comfort. In this work, the authors formulate the HVAC equipment dynamics in the setting of a two-player non-zero-sum cooperative game, which enables two decision variables(mass flow rate and supply air temperature) to perform joint optimization of the control utilization and thermal setpoint tracking by simultaneously exchanging their policies. The HVAC zone serves as a game environment for these two decision variables that act as two players in a game. It is assumed that dynamic models of HVAC equipment are not available. Furthermore, neither the state nor any estimates of HVAC disturbance(heat gains, outside variations, etc.) are accessible,but only the measurement of the zone temperature is available for feedback. Under these constraints,the authors develop a new data-driven Q-learning scheme employing policy iteration and value iteration with a bias compensation mechanism that accounts for unmeasurable disturbances and circumvents the need of full-state measurement. The proposed algorithms are shown to converge to the optimal solution corresponding to the generalized algebraic Riccati equations(GAREs) in dynamic games.
This study investigates a safe reinforcement learning algorithm for grid-forming(GFM)inverter based frequency *** guarantee the stability of the inverter-based resource(IBR)system under the learned control policy,a mo...
详细信息
This study investigates a safe reinforcement learning algorithm for grid-forming(GFM)inverter based frequency *** guarantee the stability of the inverter-based resource(IBR)system under the learned control policy,a modelbased reinforcement learning(MBRL)algorithm is combined with Lyapunov approach,which determines the safe region of states and *** obtain near optimal control policy,the control performance is safely improved by approximate dynamic programming(ADP)using data sampled from the region of attraction(ROA).Moreover,to enhance the control robustness against parameter uncertainty in the inverter,a Gaussian process(GP)model is adopted by the proposed algorithm to effectively learn system dynamics from *** simulations validate the effectiveness of the proposed algorithm.
The counterflow burner is a combustion device used for research on *** utilizing deep convolutional models to identify the combustion state of a counter flow burner through visible flame images,it facilitates the opti...
详细信息
The counterflow burner is a combustion device used for research on *** utilizing deep convolutional models to identify the combustion state of a counter flow burner through visible flame images,it facilitates the optimization of the combustion process and enhances combustion *** existing deep convolutional models,InceptionNeXt is a deep learning architecture that integrates the ideas of the Inception series and *** has garnered significant attention for its computational efficiency,remarkable model accuracy,and exceptional feature extraction ***,since this model still has limitations in the combustion state recognition task,we propose a Triple-Scale Multi-Stage InceptionNeXt(TSMS-InceptionNeXt)combustion state recognitionmethod based on feature extraction ***,to address the InceptionNeXt model’s limited ability to capture dynamic features in flame images,we introduce Triplet Attention,which applies attention to the width,height,and Red Green Blue(RGB)dimensions of the flame images to enhance its ability to model dynamic ***,to address the issue of key information loss in the Inception deep convolution layers,we propose a Similarity-based Feature Concentration(SimC)mechanism to enhance the model’s capability to concentrate on critical ***,to address the insufficient receptive field of the model,we propose a Multi-Scale Dilated Channel Parallel Integration(MDCPI)mechanism to enhance the model’s ability to extract multi-scale contextual ***,to address the issue of the model’s Multi-Layer Perceptron Head(MlpHead)neglecting channel interactions,we propose a Channel Shuffle-Guided Channel-Spatial Attention(ShuffleCS)mechanism,which integrates information from different channels to further enhance the representational power of the input *** validate the effectiveness of the method,experiments are conducted on the counterflow burner flame visible light image datase
In this paper, we study stealthy cyber-attacks on actuators of cyber-physical systems(CPS), namely zero dynamics and controllable attacks. In particular, under certain assumptions, we investigate and propose condition...
详细信息
In this paper, we study stealthy cyber-attacks on actuators of cyber-physical systems(CPS), namely zero dynamics and controllable attacks. In particular, under certain assumptions, we investigate and propose conditions under which one can execute zero dynamics and controllable attacks in the CPS. The above conditions are derived based on the Markov parameters of the CPS and elements of the system observability matrix. Consequently, in addition to outlining the number of required actuators to be attacked, these conditions provide one with the minimum system knowledge needed to perform zero dynamics and controllable cyber-attacks. As a countermeasure against the above stealthy cyber-attacks, we develop a dynamic coding scheme that increases the minimum number of the CPS required actuators to carry out zero dynamics and controllable cyber-attacks to its maximum possible value. It is shown that if at least one secure input channel exists, the proposed dynamic coding scheme can prevent adversaries from executing the zero dynamics and controllable attacks even if they have complete knowledge of the coding system. Finally, two illustrative numerical case studies are provided to demonstrate the effectiveness and capabilities of our derived conditions and proposed methodologies.
Millimeter-wave(mmWave)Non-Orthogonal Multiple Access(NOMA)with random beamforming is a promising technology to guarantee massive connectivity and low latency transmissions of future generations of mobile *** this pap...
详细信息
Millimeter-wave(mmWave)Non-Orthogonal Multiple Access(NOMA)with random beamforming is a promising technology to guarantee massive connectivity and low latency transmissions of future generations of mobile *** this paper,we introduce a cost-effective and energy-efficient mmWave-NOMA system that exploits sparse antenna arrays in the *** analysis shows that utilizing low-weight and small-sized sparse antennas in the Base Station(BS)leads to better outage probability *** also introduce an optimum low complexity Equilibrium Optimization(EO)-based algorithm to further improve the outage *** simulation and analysis results show that the systems equipped with sparse antenna arrays making use of optimum beamforming vectors outperform the conventional systems with uniform linear arrays in terms of outage probability and sum rates.
The perception in most existing vision-based reinforcement learning(RL) models for robotic manipulation relies heavily on static third-person or hand-mounted first-person cameras. In scenarios with occlusions and limi...
详细信息
The perception in most existing vision-based reinforcement learning(RL) models for robotic manipulation relies heavily on static third-person or hand-mounted first-person cameras. In scenarios with occlusions and limited maneuvering space, these carefully positioned cameras often struggle to provide effective visual observations during manipulation. Taking inspiration from human capabilities, we introduce a novel RL-based dual-arm active visual-guided manipulation model(DAVMM), which simultaneously infers “eye” actions and “hand” actions for two separate robotic arms(referred to as the vision-arm and the worker-arm) based on current observations, empowering the robot with the ability to actively perceive and interact with its environment. To handle the extensive redundant observation-action space, we propose a decouplable target-centric reward paradigm to offer stable guidance for the training process. For making fine-grained manipulation action decisions, alongside a global scene image encoder, we utilize an independent encoder to extract local target texture features,enabling the simultaneous acquisition of both global and detailed local information. Additionally, we employ residual-RL and curriculum learning techniques to further enhance our model's sample efficiency and training stability. We conducted comparative experiments and analyses of DAVMM against a set of strong baselines on three occluded and narrow-space manipulation tasks. DAVMM notably improves the success rates across all manipulation tasks and showcases rapid learning capabilities.
A silicon solar cell with a power conversion efficiency (PCE)of 4% was born in Bell Lab in 1954, seven decades ago. Today,silicon solar cells have reached an efficiency above 25%and achieved pervasive commercial succe...
A silicon solar cell with a power conversion efficiency (PCE)of 4% was born in Bell Lab in 1954, seven decades ago. Today,silicon solar cells have reached an efficiency above 25%and achieved pervasive commercial success [1]. In spite of the steady improvement in efficiency, the interest and enthusiasm in search for new materials and innovative device architectures for newgeneration solar cells have never diminished or subsided;
Advancements in neuromorphic computing have given an impetus to the development of systems with adaptive behavior,dynamic responses,and energy efficiency *** charge-based or emerging memory technologies such as memris...
详细信息
Advancements in neuromorphic computing have given an impetus to the development of systems with adaptive behavior,dynamic responses,and energy efficiency *** charge-based or emerging memory technologies such as memristors have been developed to emulate synaptic plasticity,replicating the key functionality of neurons—integrating diverse presynaptic inputs to fire electrical impulses—has remained *** this study,we developed reconfigurable metal-oxide-semiconductor capacitors(MOSCaps)based on hafnium diselenide(HfSe2).The proposed devices exhibit(1)optoelectronic synaptic features and perform separate stimulus-associated learning,indicating considerable adaptive neuron emulation,(2)dual light-enabled charge-trapping and memcapacitive behavior within the same MOSCap device,whose threshold voltage and capacitance vary based on the light intensity across the visible spectrum,(3)memcapacitor volatility tuning based on the biasing conditions,enabling the transition from volatile light sensing to non-volatile optical data *** reconfigurability and multifunctionality of MOSCap were used to integrate the device into a leaky integrate-and-fire neuron model within a spiking neural network to dynamically adjust firing patterns based on light stimuli and detect exoplanets through variations in light intensity.
暂无评论