Acute Bilirubin Encephalopathy(ABE)is a significant threat to neonates and it leads to disability and high mortality *** and treating ABE promptly is important to prevent further complications and long-term *** studie...
详细信息
Acute Bilirubin Encephalopathy(ABE)is a significant threat to neonates and it leads to disability and high mortality *** and treating ABE promptly is important to prevent further complications and long-term *** studies have explored ABE ***,they often face limitations in classification due to reliance on a single modality of Magnetic Resonance Imaging(MRI).To tackle this problem,the authors propose a Tri-M2MT model for precise ABE detection by using tri-modality MRI *** scans include T1-weighted imaging(T1WI),T2-weighted imaging(T2WI),and apparent diffusion coefficient maps to get indepth ***,the tri-modality MRI scans are collected and preprocessesed by using an Advanced Gaussian Filter for noise reduction and Z-score normalisation for data *** Advanced Capsule Network was utilised to extract relevant features by using Snake Optimization Algorithm to select optimal features based on feature correlation with the aim of minimising complexity and enhancing detection ***,a multi-transformer approach was used for feature fusion and identify feature correlations ***,accurate ABE diagnosis is achieved through the utilisation of a SoftMax *** performance of the proposed Tri-M2MT model is evaluated across various metrics,including accuracy,specificity,sensitivity,F1-score,and ROC curve analysis,and the proposed methodology provides better performance compared to existing methodologies.
Electrolysis tanks are used to smeltmetals based on electrochemical principles,and the short-circuiting of the pole plates in the tanks in the production process will lead to high temperatures,thus affecting normal **...
详细信息
Electrolysis tanks are used to smeltmetals based on electrochemical principles,and the short-circuiting of the pole plates in the tanks in the production process will lead to high temperatures,thus affecting normal *** at the problems of time-consuming and poor accuracy of existing infrared methods for high-temperature detection of dense pole plates in electrolysis tanks,an infrared dense pole plate anomalous target detection network YOLOv5-RMF based on You Only Look Once version 5(YOLOv5)is ***,we modified the Real-Time Enhanced Super-Resolution Generative Adversarial Network(Real-ESRGAN)by changing the U-shaped network(U-Net)to Attention U-Net,to preprocess the images;secondly,we propose a new Focus module that introduces the Marr operator,which can provide more boundary information for the network;again,because Complete Intersection over Union(CIOU)cannot accommodate target borders that are increasing and decreasing,replace CIOU with Extended Intersection over Union(EIOU),while the loss function is changed to Focal and Efficient IOU(Focal-EIOU)due to the different difficulty of sample *** the homemade dataset,the precision of our method is 94%,the recall is 70.8%,and the map@.5 is 83.6%,which is an improvement of 1.3%in precision,9.7%in recall,and 7%in map@.5 over the original *** algorithm can meet the needs of electrolysis tank pole plate abnormal temperature detection,which can lay a technical foundation for improving production efficiency and reducing production waste.
Purpose: The difficulty of diagnosing several lung disorders, including atelectasis, cardiomegaly, lung cancer, and COVID-19, is a challenging problem and needs to be addressed. These conditions exhibit some symptoms ...
详细信息
Purpose: The difficulty of diagnosing several lung disorders, including atelectasis, cardiomegaly, lung cancer, and COVID-19, is a challenging problem and needs to be addressed. These conditions exhibit some symptoms and demand advanced medical imaging process, thorough clinical assessments, and innovative procedures for accurate diagnosis. The shortage of qualified radiologists further makes the problem more complex to deal with. COVID-19 in particular has resulted in a remarkable number of fatalities around the world. Children below the age of 5 and individuals over 65 are more likely to be affected by lung disorders. It is very hard to diagnose and manage COVID-19 absolutely, but it can be identified earlier by employing computer-aided diagnosis (CAD) technologies to make timely diagnosis. Currently, radiologists adopt technologies, which are driven by artificial intelligence. By using them, medical imaging data, such as chest X-rays and CT scans, can be investigated to identify patterns to diagnose the severity of the virus. This expedites the diagnostic process and enhances accuracy, facilitating more timely and precise medical interventions. The efficiency of artificial intelligence in processing large datasets can directly help healthcare professionals in making diagnosis quicker and more accurate. The objective of the work in this paper is to design and implement deep learning model classifiers, which will effectively categorize the patterns found in the X-rays and CT scans. Methods: Three techniques for categorization are exploited to propose an entirely new hybrid convolutional neural network (CNN) model in this context. MRI and CT image categorization in the first classification method employ Fully Connected (FC) layers. The weights are calculated and tuned for training the algorithm over multiple periods to deliver the maximum precision for classification. The most accurate MRI and CT image characteristics are studied, and deep learning model classifiers
Despite the various advances in medical technology, heart disease continues to rank among the leading causes of mortality in the world, killing millions each year. There is hope that the risks involved with heart dise...
详细信息
Random testing is scalable but often fails to hit corner program behaviors,while systematic testing (e.g.,concolic execution) is promising to cover corner program behaviors but is not scalable to explore all program...
详细信息
Random testing is scalable but often fails to hit corner program behaviors,while systematic testing (e.g.,concolic execution) is promising to cover corner program behaviors but is not scalable to explore all program *** attempts to integrate random testing with systematic testing lack targeted *** this paper,we propose a guided hybrid testing approach,named BATON,to synergize random testing with concolic *** integrates the knowledge inside test cases and their executions into a conditional execution graph,and uses such knowledge to guide test case ***,we learn classification models for some conditionals in the conditional execution graph in a demand-driven *** models are used to guide random testing to reach and cover partially-covered *** further employ targeted concolic testing to cover conditionals that cannot be fully covered by guided random *** implemented BATONfor Java and evaluated it on three *** results show that BATONimproved branch coverage and mutation score over random testing by 16.2%–29.4%and 19.0%–30.0%,over adaptive random testing by 16.8%–33.8%and 19.4%–34.2%,over concolic testing by 2.3%–29.9%and 2.9%–30.1%,and over simple hybrid testing by 1.6%–14.5%and 1.4%–18.7%.
Foundation models(FMs) [1] have revolutionized software development and become the core components of large software systems. This paradigm shift, however, demands fundamental re-imagining of software engineering theo...
Foundation models(FMs) [1] have revolutionized software development and become the core components of large software systems. This paradigm shift, however, demands fundamental re-imagining of software engineering theories and methodologies [2]. Instead of replacing existing software modules implemented by symbolic logic, incorporating FMs' capabilities to build software systems requires entirely new modules that leverage the unique capabilities of ***, while FMs excel at handling uncertainty, recognizing patterns, and processing unstructured data, we need new engineering theories that support the paradigm shift from explicitly programming and maintaining user-defined symbolic logic to creating rich, expressive requirements that FMs can accurately perceive and implement.
Lymphoma is a type of malignant tumor that develops from lymphoid hematopoietic tissues. The precise diagnosis of lymphomas is one of the challenging tasks because of the similarity within the morphological features a...
详细信息
All the software products developed will need testing to ensure the quality and accuracy of the product. It makes the life of testers much easier when they can optimize on the effort spent and predict defects for the ...
详细信息
Pretrained language models (PLMs) have shown remarkable performance on question answering (QA) tasks, but they usually require fine-tuning (FT) that depends on a substantial quantity of QA pairs. Therefore, improving ...
详细信息
data collection using mobile sink(s) has proven to reduce energy consumption and enhance the network lifetime of wireless sensor networks. Generally speaking, a mobile sink (MS) traverses the network region, sojournin...
详细信息
暂无评论