The increasing use of cloud-based image storage and retrieval systems has made ensuring security and efficiency crucial. The security enhancement of image retrieval and image archival in cloud computing has received c...
详细信息
The increasing use of cloud-based image storage and retrieval systems has made ensuring security and efficiency crucial. The security enhancement of image retrieval and image archival in cloud computing has received considerable attention in transmitting data and ensuring data confidentiality among cloud servers and users. Various traditional image retrieval techniques regarding security have developed in recent years but they do not apply to large-scale environments. This paper introduces a new approach called Triple network-based adaptive grey wolf (TN-AGW) to address these challenges. The TN-AGW framework combines the adaptability of the Grey Wolf Optimization (GWO) algorithm with the resilience of Triple Network (TN) to enhance image retrieval in cloud servers while maintaining robust security measures. By using adaptive mechanisms, TN-AGW dynamically adjusts its parameters to improve the efficiency of image retrieval processes, reducing latency and utilization of resources. However, the image retrieval process is efficiently performed by a triple network and the parameters employed in the network are optimized by Adaptive Grey Wolf (AGW) optimization. Imputation of missing values, Min–Max normalization, and Z-score standardization processes are used to preprocess the images. The image extraction process is undertaken by a modified convolutional neural network (MCNN) approach. Moreover, input images are taken from datasets such as the Landsat 8 dataset and the Moderate Resolution Imaging Spectroradiometer (MODIS) dataset is employed for image retrieval. Further, the performance such as accuracy, precision, recall, specificity, F1-score, and false alarm rate (FAR) is evaluated, the value of accuracy reaches 98.1%, the precision of 97.2%, recall of 96.1%, and specificity of 917.2% respectively. Also, the convergence speed is enhanced in this TN-AGW approach. Therefore, the proposed TN-AGW approach achieves greater efficiency in image retrieving than other existing
The Salp swarm algorithm (SSA) simulates how salps forage and travel in the ocean. SSA suffers from low initial population diversity, improper balancing of exploration and exploitation, and slow convergence speed. Thu...
详细信息
In recent years, object detection (OD) has become essential in computer vision for identifying and localizing objects in digital images, prompting various sectors to adopt this technology. However, increased reliance ...
详细信息
In recent years, object detection (OD) has become essential in computer vision for identifying and localizing objects in digital images, prompting various sectors to adopt this technology. However, increased reliance on OD has also revealed vulnerabilities to attacks, highlighting the need for effective detection methods to mitigate potential risks. Therefore, the present paper primarily surveys existing studies on OD in the context of security and surveillance, highlighting its significance in these critical areas. The discussion includes an examination of conventional techniques such as HOG, DPM, and the Viola‒Jones detector. While these traditional methods have laid the groundwork for object detection, they are often considered inadequate because of their time-consuming and labor-intensive nature. Consequently, the focus shifts to DL (deep learning)-based OD models such as YOLO (you only look once), single shot detector (SSD), and Fast R-CNN. Among these, the present survey paper emphasizes YOLO models for their speed and efficiency, as they utilize a unified architecture for both region proposal and classification, making them particularly suitable for real-time applications. However, the distinguishing feature of the proposed survey lies in its comprehensive coverage, which not only encompasses YOLO models but also integrates an analysis of generative AI (GenAI) models and metaheuristic approaches. This multifaceted exploration allows for a richer understanding of the current landscape in computer vision and AI, highlighting the synergies and potential applications that arise from combining these diverse methodologies. Furthermore, the paper explores a wide range of applications for OD in real-time security and surveillance settings, illustrating its effectiveness in addressing contemporary security challenges. This highlights how advanced OD techniques can enhance situational awareness and response capabilities in various scenarios. By focusing on these aspect
In the evolving landscape of supply chain management, the integration of radio-frequency identification (RFID) technology has marked a significant milestone. This development has led to the emergence of a new system i...
详细信息
作者:
Mahapatra, AbhijeetPradhan, RosyMajhi, Santosh K.Mishra, Kaushik
Department of Computer Science & Engineering Odisha Burla768018 India Sikkim Manipal University
Sikkim Manipal Institute of Technology Department of Artificial Intelligence and Data Science Sikkim India
Department of Electrical Engineering Odisha Burla768018 India
Department of Computer Science and Information Technology Chhattisgarh Bilaspur495009 India Manipal Academy of Higher Education
Manipal Institute of Technology Bengaluru Department of Computer Science and Engineering Manipal India
The rapid proliferation of IoT devices like smartphones, smartwatches, etc. has significantly elevated the quantity of data requiring execution. It poses challenges for centralized Cloud computing servers, such as lat...
详细信息
Effective recommender systems play a crucial role in accurately capturing user and item attributes that mirror individual preferences. Some existing recommendation techniques have started to shift their focus towards ...
详细信息
The brain is the central part of the body that controls the overall functionality of the human body. The formulation of abnormal cells in the brain may lead to a brain tumor. Manual examination of a brain tumor is cha...
详细信息
Efficient navigation of emergency response vehicles (ERVs) through urban congestion is crucial to life-saving efforts, yet traditional traffic systems often slow down their swift passage. In this work, we introduce Dy...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distri...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distributed paradigm to address these concerns by enabling privacy-preserving recommendations directly on user devices. In this survey, we review and categorize current progress in CUFR, focusing on four key aspects: privacy, security, accuracy, and efficiency. Firstly,we conduct an in-depth privacy analysis, discuss various cases of privacy leakage, and then review recent methods for privacy protection. Secondly, we analyze security concerns and review recent methods for untargeted and targeted *** untargeted attack methods, we categorize them into data poisoning attack methods and parameter poisoning attack methods. For targeted attack methods, we categorize them into user-based methods and item-based methods. Thirdly,we provide an overview of the federated variants of some representative methods, and then review the recent methods for improving accuracy from two categories: data heterogeneity and high-order information. Fourthly, we review recent methods for improving training efficiency from two categories: client sampling and model compression. Finally, we conclude this survey and explore some potential future research topics in CUFR.
In recent years, academics have placed a high value on multi-modal emotion identification, as well as extensive research has been conducted in the areas of video, text, voice, and physical signal emotion detection. Th...
详细信息
暂无评论