Deep Neural Networks offers a high rate of accuracy, extensive, parameters, and intensive computational requirements that often characterize these networks. Due to high memory consumption and energy usage, this result...
详细信息
An extensive amount of attention has been paid to the implications that the detection of sarcasm on online social networks such as Facebook, X etc. could have for the reason of sarcasm detection, sentiment analysis, c...
详细信息
People constantly seek development to maintain their competitiveness in their careers in this time when every element of society is advancing. E-learning platforms adapt to the always changing environment and offer le...
详细信息
The area lies near Yamuna River in Delhi faces a frequent flood event, and with the increasing frequency and intensity of flood events highly impacted the human lives, infrastructure, and agriculture. Hence, there is ...
详细信息
This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as o...
详细信息
This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as other transformer-based models including Token to Token ViT,ViT withoutmemory,and Parallel *** awidely-used steel surface defect dataset,the research applies data augmentation and t-distributed stochastic neighbor embedding(t-SNE)to enhance feature extraction and *** techniques mitigated overfitting,stabilized training,and improved generalization *** LMViT model achieved a test accuracy of 97.22%,significantly outperforming ResNet18(88.89%)and ResNet50(88.90%),aswell as the Token to TokenViT(88.46%),ViT without memory(87.18),and Parallel ViT(91.03%).Furthermore,LMViT exhibited superior training and validation performance,attaining a validation accuracy of 98.2%compared to 91.0%for ResNet 18,96.0%for ResNet50,and 89.12%,87.51%,and 91.21%for Token to Token ViT,ViT without memory,and Parallel ViT,*** findings highlight the LMViT’s ability to capture long-range dependencies in images,an areawhere CNNs struggle due to their reliance on local receptive fields and hierarchical feature *** additional transformer-based models also demonstrate improved performance in capturing complex features over CNNs,with LMViT excelling particularly at detecting subtle and complex defects,which is critical for maintaining product quality and operational efficiency in industrial *** instance,the LMViT model successfully identified fine scratches and minor surface irregularities that CNNs often *** study not only demonstrates LMViT’s potential for real-world defect detection but also underscores the promise of other transformer-based architectures like Token to Token ViT,ViT without memory,and Parallel ViT in industrial scenarios where complex spatial relationships are *** research m
In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow *** cloud data centers,fog computing takes more time to run workflow ***,it is essenti...
详细信息
In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow *** cloud data centers,fog computing takes more time to run workflow ***,it is essential to develop effective models for Virtual Machine(VM)allocation and task scheduling in fog computing *** task scheduling,VM migration,and allocation,altogether optimize the use of computational resources across different fog *** process ensures that the tasks are executed with minimal energy consumption,which reduces the chances of resource *** this manuscript,the proposed framework comprises two phases:(i)effective task scheduling using a fractional selectivity approach and(ii)VM allocation by proposing an algorithm by the name of Fitness Sharing Chaotic Particle Swarm Optimization(FSCPSO).The proposed FSCPSO algorithm integrates the concepts of chaos theory and fitness sharing that effectively balance both global exploration and local *** balance enables the use of a wide range of solutions that leads to minimal total cost and makespan,in comparison to other traditional optimization *** FSCPSO algorithm’s performance is analyzed using six evaluation measures namely,Load Balancing Level(LBL),Average Resource Utilization(ARU),total cost,makespan,energy consumption,and response *** relation to the conventional optimization algorithms,the FSCPSO algorithm achieves a higher LBL of 39.12%,ARU of 58.15%,a minimal total cost of 1175,and a makespan of 85.87 ms,particularly when evaluated for 50 tasks.
The healthcare sector holds valuable and sensitive *** amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast *** to their nature,software-defined networks(SDNs)are widely use...
详细信息
The healthcare sector holds valuable and sensitive *** amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast *** to their nature,software-defined networks(SDNs)are widely used in healthcare systems,as they ensure effective resource utilization,safety,great network management,and *** this sector,due to the value of thedata,SDNs faceamajor challengeposed byawide range of attacks,such as distributed denial of service(DDoS)and probe *** attacks reduce network performance,causing the degradation of different key performance indicators(KPIs)or,in the worst cases,a network failure which can threaten human *** can be significant,especially with the current expansion of portable healthcare that supports mobile and wireless devices for what is called mobile health,or *** this study,we examine the effectiveness of using SDNs for defense against DDoS,as well as their effects on different network KPIs under various *** propose a threshold-based DDoS classifier(TBDC)technique to classify DDoS attacks in healthcare SDNs,aiming to block traffic considered a hazard in the form of a DDoS *** then evaluate the accuracy and performance of the proposed TBDC *** technique shows outstanding performance,increasing the mean throughput by 190.3%,reducing the mean delay by 95%,and reducing packet loss by 99.7%relative to normal,with DDoS attack traffic.
A complicated neuro-developmental disorder called Autism Spectrum Disorder (ASD) is abnormal activities related to brain development. ASD generally affects the physical impression of the face as well as the growth of ...
详细信息
Chest x-ray studies can be automatically detected and their locations located using artificial intelligence (AI) in healthcare. To detect the location of findings, additional annotation in the form of bounding boxes i...
详细信息
The emergence of interconnected UAVs has given rise to the creation of flying ad hoc networks (FANETs) aimed at efficiently facilitating network-dependent services. However, FANET encountered considerable challenges i...
详细信息
暂无评论