This study presents a comparative analysis of ten pre-trained convolutional neural network (CNN) models, evaluated across three remote sensing datasets: EuroSat, NWPU, and Earth Hazards (Land Sliding). We investigate ...
详细信息
Early identification of skin cancer is mandatory to minimize the worldwide death rate as this disease is covering more than 30% of mortality rates in young and adults. Researchers are in the move of proposing advanced...
详细信息
The rapid development of the Internet has led to the widespread dissemination of manipulated facial images, significantly impacting people's daily lives. With the continuous advancement of Deepfake technology, the...
详细信息
The rapid development of the Internet has led to the widespread dissemination of manipulated facial images, significantly impacting people's daily lives. With the continuous advancement of Deepfake technology, the generated counterfeit facial images have become increasingly challenging to distinguish. There is an urgent need for a more robust and convincing detection method. Current detection methods mainly operate in the spatial domain and transform the spatial domain into other domains for analysis. With the emergence of transformers, some researchers have also combined traditional convolutional networks with transformers for detection. This paper explores the artifacts left by Deepfakes in various domains and, based on this exploration, proposes a detection method that utilizes the steganalysis rich model to extract high-frequency noise to complement spatial features. We have designed two main modules to fully leverage the interaction between these two aspects based on traditional convolutional neural networks. The first is the multi-scale mixed feature attention module, which introduces artifacts from high-frequency noise into spatial textures, thereby enhancing the model's learning of spatial texture features. The second is the multi-scale channel attention module, which reduces the impact of background noise by weighting the features. Our proposed method was experimentally evaluated on mainstream datasets, and a significant amount of experimental results demonstrate the effectiveness of our approach in detecting Deepfake forged faces, outperforming the majority of existing methods.
The incredible progress in technologies has drastically increased the usage of Web *** share their credentials like userid and password or use their smart cards to get authenticated by the application *** cards are ha...
详细信息
The incredible progress in technologies has drastically increased the usage of Web *** share their credentials like userid and password or use their smart cards to get authenticated by the application *** cards are handy to use,but they are susceptible to stolen smart card attacks and few other notable security *** prefer to use Web applications that guarantee for security against several security attacks,especially insider attacks,which is *** of several existing schemes prove the security pitfalls of the protocols from preventing security attacks,specifically insider *** paper introduces LAPUP:a novel lightweight authentication protocol using physically unclonable function(PUF)to prevent security attacks,principally insider *** PUFs are used to generate the security keys,challenge-response pair(CRP)and hardware signature for designing the *** transmitted messages are shared as hash values and encrypted by the keys generated by *** messages are devoid of all possible attacks executed by any attacker,including insider *** is also free from stolen verifier attacks,as the databases are secured by using the hardware signature generated by *** analysis of the protocol exhibits the strength of LAPUP in preventing insider attacks and its resistance against several other security *** evaluation results of the communication and computation costs of LAPUP clearly shows that it achieves better performance than existing protocols,despite providing enhanced security.
Graph neural networks (GNNs) have gained increasing popularity, while usually suffering from unaffordable computations for real-world large-scale applications. Hence, pruning GNNs is of great need but largely unexplor...
详细信息
Graph neural networks (GNNs) have gained increasing popularity, while usually suffering from unaffordable computations for real-world large-scale applications. Hence, pruning GNNs is of great need but largely unexplored. The recent work Unified GNN Sparsification (UGS) studies lottery ticket learning for GNNs, aiming to find a subset of model parameters and graph structures that can best maintain the GNN performance. However, it is tailed for the transductive setting, failing to generalize to unseen graphs, which are common in inductive tasks like graph classification. In this work, we propose a simple and effective learning paradigm, Inductive Co-Pruning of GNNs (ICPG), to endow graph lottery tickets with inductive pruning capacity. To prune the input graphs, we design a predictive model to generate importance scores for each edge based on the input. To prune the model parameters, it views the weight’s magnitude as their importance scores. Then we design an iterative co-pruning strategy to trim the graph edges and GNN weights based on their importance scores. Although it might be strikingly simple, ICPG surpasses the existing pruning method and can be universally applicable in both inductive and transductive learning settings. On 10 graph-classification and two node-classification benchmarks, ICPG achieves the same performance level with 14.26%–43.12% sparsity for graphs and 48.80%–91.41% sparsity for the GNN model.
As data grows in size,search engines face new challenges in extracting more relevant content for users’*** a result,a number of retrieval and ranking algorithms have been employed to ensure that the results are relev...
详细信息
As data grows in size,search engines face new challenges in extracting more relevant content for users’*** a result,a number of retrieval and ranking algorithms have been employed to ensure that the results are relevant to the user’s ***,most existing indexes and ranking algo-rithms crawl documents and web pages based on a limited set of criteria designed to meet user expectations,making it impossible to deliver exceptionally accurate *** a result,this study investigates and analyses how search engines work,as well as the elements that contribute to higher *** paper addresses the issue of bias by proposing a new ranking algorithm based on the PageRank(PR)algorithm,which is one of the most widely used page ranking algorithms We pro-pose weighted PageRank(WPR)algorithms to test the relationship between these various *** Weighted Page Rank(WPR)model was used in three dis-tinct trials to compare the rankings of documents and pages based on one or more user preferences ***findings of utilizing the Weighted Page Rank model showed that using multiple criteria to rankfinal pages is better than using only one,and that some criteria had a greater impact on ranking results than others.
Nomadic Vehicular Cloud(NVC)is envisaged in this *** predo-minant aspects of NVC is,it moves along with the vehicle that initiates it and functions only with the resources of moving vehicles on the heavy traffic road ...
详细信息
Nomadic Vehicular Cloud(NVC)is envisaged in this *** predo-minant aspects of NVC is,it moves along with the vehicle that initiates it and functions only with the resources of moving vehicles on the heavy traffic road without relying on any of the static infrastructure and NVC decides the initiation time of container migration using cell transmission model(CTM).Containers are used in the place of Virtual Machines(VM),as containers’features are very apt to NVC’s dynamic *** specifications of 5G NR V2X PC5 interface are applied to NVC,for the feature of not relying on the network ***-days,the peak traffic on the road and the bottlenecks due to it are inevitable,which are seen here as the benefits for VC in terms of resource availability and residual in-network *** speed range of high-end vehicles poses the issue of dis-connectivity among VC participants,that results the container migration *** the entire VC participants are on the move,to maintain proximity of the containers hosted by them,estimating their movements plays a vital *** infer the vehicle movements on the road stretch and initiate the container migration prior enough to avoid the migration failure due to vehicles dynamicity,this paper proposes to apply the CTM to the container based and 5G NR V2X enabled *** simulation results show that there is a significant increase in the success rate of vehicular cloud in terms of successful container migrations.
Nowadays, in a world full of competition, students have so many extracurricular activities for the sake of their overall development, and these activities go parallel with their academics. Sometimes, in this restless ...
详细信息
This paper presents a concise methodology for the detection of partially reduplicated Multi-Word Expressions (MWEs) in Bengali texts. The entire process of identifying such reduplicated forms is carried out in two dis...
详细信息
The sustainable livelihoods of farmers in India hinge upon effective crop management and optimal yield. However, the existing manual system for crop selection is time-consuming, relies heavily on experience, and often...
详细信息
暂无评论