咨询与建议

限定检索结果

文献类型

  • 970 篇 会议
  • 521 篇 期刊文献
  • 13 册 图书

馆藏范围

  • 1,504 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,050 篇 工学
    • 795 篇 计算机科学与技术...
    • 643 篇 软件工程
    • 212 篇 控制科学与工程
    • 166 篇 生物工程
    • 128 篇 信息与通信工程
    • 91 篇 生物医学工程(可授...
    • 70 篇 机械工程
    • 65 篇 光学工程
    • 39 篇 电气工程
    • 36 篇 仪器科学与技术
    • 36 篇 土木工程
    • 35 篇 建筑学
    • 26 篇 电子科学与技术(可...
    • 23 篇 化学工程与技术
    • 21 篇 交通运输工程
  • 449 篇 理学
    • 192 篇 生物学
    • 163 篇 数学
    • 125 篇 物理学
    • 56 篇 统计学(可授理学、...
    • 25 篇 化学
    • 19 篇 系统科学
  • 242 篇 管理学
    • 139 篇 图书情报与档案管...
    • 107 篇 管理科学与工程(可...
    • 58 篇 工商管理
  • 103 篇 医学
    • 89 篇 临床医学
    • 61 篇 基础医学(可授医学...
    • 38 篇 药学(可授医学、理...
    • 31 篇 公共卫生与预防医...
  • 73 篇 法学
    • 72 篇 社会学
  • 67 篇 教育学
    • 56 篇 教育学
  • 13 篇 经济学
  • 12 篇 农学
  • 7 篇 文学
  • 4 篇 艺术学
  • 3 篇 军事学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 63 篇 computer science
  • 63 篇 human computer i...
  • 48 篇 user interfaces
  • 47 篇 virtual reality
  • 42 篇 visualization
  • 31 篇 data visualizati...
  • 26 篇 semantics
  • 25 篇 humans
  • 25 篇 students
  • 22 篇 educational inst...
  • 17 篇 three-dimensiona...
  • 17 篇 robots
  • 17 篇 augmented realit...
  • 17 篇 usability
  • 17 篇 games
  • 17 篇 training
  • 16 篇 data mining
  • 16 篇 artificial intel...
  • 16 篇 testing
  • 15 篇 application soft...

机构

  • 80 篇 department of co...
  • 78 篇 moe key lab of a...
  • 58 篇 key laboratory o...
  • 32 篇 human-computer i...
  • 29 篇 key lab. of shan...
  • 18 篇 human-computer i...
  • 15 篇 guangxi key lab ...
  • 13 篇 shenzhen key lab...
  • 12 篇 tsinghua univers...
  • 9 篇 key lab. of shan...
  • 9 篇 human-robot inte...
  • 9 篇 department of co...
  • 9 篇 beijing key lab ...
  • 8 篇 department of co...
  • 8 篇 university of ch...
  • 8 篇 human computer i...
  • 8 篇 human-computer i...
  • 7 篇 microsoft resear...
  • 7 篇 the department o...
  • 7 篇 department of in...

作者

  • 101 篇 zhao hai
  • 44 篇 zhang zhuosheng
  • 41 篇 shneiderman ben
  • 28 篇 bederson benjami...
  • 27 篇 ben shneiderman
  • 27 篇 li zuchao
  • 25 篇 bowman doug a.
  • 25 篇 doug a. bowman
  • 17 篇 yu kai
  • 16 篇 wang rui
  • 14 篇 petrie helen
  • 13 篇 plaisant catheri...
  • 13 篇 utiyama masao
  • 12 篇 b. shneiderman
  • 11 篇 heng pheng-ann
  • 11 篇 chen lu
  • 10 篇 zhou xiang
  • 10 篇 sumita eiichiro
  • 10 篇 north chris
  • 9 篇 huang faliang

语言

  • 1,411 篇 英文
  • 86 篇 其他
  • 6 篇 中文
  • 1 篇 法文
检索条件"机构=Department of Computer Science & Human-Computer Interaction Lab"
1504 条 记 录,以下是381-390 订阅
排序:
Multi-tasking dialogue comprehension with discourse parsing
arXiv
收藏 引用
arXiv 2021年
作者: He, Yuchen Zhang, Zhuosheng Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University
Multi-party dialogue machine reading comprehension (MRC) raises an even more challenging understanding goal on dialogue with more than two involved speakers, compared with the traditional plain passage style MRC. To a...
来源: 评论
SJTU at MRP 2019: A transition-based multi-task parser for cross-framework meaning representation parsing  23
SJTU at MRP 2019: A transition-based multi-task parser for c...
收藏 引用
2019 Shared Task on Cross-Framework Meaning Representation Parsing, MRP 2019 at the 23rd Conference for Computational Language Learning, CoNLL 2019
作者: Bai, Hongxiao Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University China Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University China
This paper describes the system of our team SJTU for our participation in the CoNLL 2019 Shared Task: Cross-Framework Meaning Representation Parsing. The goal of the task is to advance data-driven parsing into graph-s... 详细信息
来源: 评论
Self- And Pseudo-self-supervised prediction of speaker and key-utterance for multi-party dialogue reading comprehension
arXiv
收藏 引用
arXiv 2021年
作者: Li, Yiyang Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University
Multi-party dialogue machine reading comprehension (MRC) brings tremendous challenge since it involves multiple speakers at one dialogue, resulting in intricate speaker information flows and noisy dialogue contexts. T... 详细信息
来源: 评论
Graph-free multi-hop reading comprehension: A select-to-guide strategy
arXiv
收藏 引用
arXiv 2021年
作者: Wu, Bohong Zhang, Zhuosheng Zhao, Hai The Department of Computer Science and Engineering Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University
Multi-hop reading comprehension (MHRC) requires not only to predict the correct answer span in the given passage, but also to provide a chain of supporting evidences for reasoning interpretability. It is natural to mo... 详细信息
来源: 评论
Neural Correlates of Perceiving Animacy in Robotic Objects
Research Square
收藏 引用
Research Square 2024年
作者: Yizhar, Or Maimon, Amber Tal, Zohar Wald, Iddo Yehoshua Erel, Hadas Friedman, Doron Zuckerman, Oren Amedi, Amir The Baruch Ivcher Institute for Brain Cognition and Technology Baruch Ivcher School of Psychology Reichman University Herzliya Israel Max Planck Institute for Human Development Research Group Adaptive Memory and Decision Making Germany Berlin Germany Computational Psychiatry and Neurotechnology Lab Department of Brain and Cognitive Sciences Ben Gurion University Be’er Sheva Israel Digital Media Lab Department of Mathematics and Computer Science University of Bremen Bremen Germany Proaction Laboratory Faculty of Psychology and Educational Sciences University of Coimbra Coimbra Portugal Media Innovation Lab Sammy Ofer School of Communications Reichman University Herzliya Israel Advanced Reality Lab Sammy Ofer School of Communications Reichman University Herzliya Israel
The prevalence of robots in modern society calls for gaining a fundamental understanding of the underlying principles of human-robot interaction. In particular, we need to understand how people perceive robots and how... 详细信息
来源: 评论
Multisensory Approaches to human-Food interaction  20
Multisensory Approaches to Human-Food Interaction
收藏 引用
22nd ACM International Conference on Multimodal interaction, ICMI 2020
作者: Velasco, Carlos Nijholt, Anton Spence, Charles Narumi, Takuji Motoki, Kosuke Huisman, Gijs Obrist, Marianna Department of Marketing Bi Norwegian Business School Oslo Norway University of Twente Human Media Interaction Enschede Netherlands Department of Experimental Psychology University of Oxford Oxford United Kingdom Graduate School of Information Science and Technology University of Tokyo Tokyo Japan Department of Food Science and Business Miyagi University Sendai Japan Digital Society School Amsterdam University of Applied Sciences Amsterdam Netherlands Department of Computer Science University College London London United Kingdom
Here, we present the outcome of the 4th workshop on Multisensory Approaches to human-Food interaction (MHFI), developed in collaboration with ICMI 2020 in Utrecht, The Netherlands. Capitalizing on the increasing inter... 详细信息
来源: 评论
Grammatical Error Correction as GAN-like sequence labeling
arXiv
收藏 引用
arXiv 2021年
作者: Parnow, Kevin Li, Zuchao Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University China Key Lab. of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University China
In Grammatical Error Correction (GEC), sequence labeling models enjoy fast inference compared to sequence-to-sequence models;however, inference in sequence labeling GEC models is an iterative process, as sentences are... 详细信息
来源: 评论
Socially Pertinent Robots in Gerontological Healthcare
arXiv
收藏 引用
arXiv 2024年
作者: Alameda-Pineda, Xavier Addlesee, Angus García, Daniel Hernández Reinke, Chris Arias, Soraya Arrigoni, Federica Auternaud, Alex Blavette, Lauriane Beyan, Cigdem Camara, Luis Gomez Cohen, Ohad Conti, Alessandro Dacunha, Sébastien Dondrup, Christian Ellinson, Yoav Ferro, Francesco Gannot, Sharon Gras, Florian Gunson, Nancie Horaud, Radu D’Incà, Moreno Kimouche, Imad Lemaignan, Séverin Lemon, Oliver Liotard, Cyril Marchionni, Luca Moradi, Mordehay Pajdla, Tomas Pino, Maribel Polic, Michal Py, Matthieu Rado, Ariel Ren, Bin Ricci, Elisa Rigaud, Anne-Sophie Rota, Paolo Romeo, Marta Sebe, Nicu Sieińska, Weronika Tandeitnik, Pinchas Tonini, Francesco Turro, Nicolas Wintz, Timothée Yu, Yanchao RobotLearn Team Inria at Univ. Grenoble Alpes CNRS LJK 655 Avenue de l’Europe Montbonnot38334 France Czech Institute of Informatics Robotics and Cybernetics Czech Technical University in Prague Jugoslávských partyzánů 1580/3 Dejvice 160 00 Czech Republic Acoustic Signal Processing Laboratory Bar-Ilan University Ramat-Gan5290002 Israel Department of Information and Computer Science University of Trento Via Sommarive 9 Trento38123 Italy Interaction Lab Mathematical and Computer Sciences Heriot-Watt University EdinburghEH14 4AS United Kingdom ERM Automatismes 561 allée Bellecour Carpentras84200 France PAL Robotics C/ Pujades 77-79 Barcelona08005 Spain Lusage Living Lab Assistance Publique - Hopitaux de Paris 54-56 Rue Pascal Paris75013 France
Despite the many recent achievements in developing and deploying social robotics, there are still many underexplored environments and applications for which systematic evaluation of such systems by end-users is necess... 详细信息
来源: 评论
Advances in multi-turn dialogue comprehension: A survey
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Zhuosheng Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University Key Lab. of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China
Training machines to understand natural language and interact with humans is an elusive and essential task of artificial intelligence. A diversity of dialogue systems has been designed with the rapid development of de... 详细信息
来源: 评论
Defending pre-trained language models from adversarial word substitutions without performance sacrifice
arXiv
收藏 引用
arXiv 2021年
作者: Bao, Rongzhou Wang, Jiayi Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University Key Lab. of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China
Pre-trained contextualized language models (PrLMs) have led to strong performance gains in downstream natural language understanding tasks. However, PrLMs can still be easily fooled by adversarial word substitution, w... 详细信息
来源: 评论