咨询与建议

限定检索结果

文献类型

  • 970 篇 会议
  • 521 篇 期刊文献
  • 13 册 图书

馆藏范围

  • 1,504 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,050 篇 工学
    • 795 篇 计算机科学与技术...
    • 643 篇 软件工程
    • 212 篇 控制科学与工程
    • 166 篇 生物工程
    • 128 篇 信息与通信工程
    • 91 篇 生物医学工程(可授...
    • 70 篇 机械工程
    • 65 篇 光学工程
    • 39 篇 电气工程
    • 36 篇 仪器科学与技术
    • 36 篇 土木工程
    • 35 篇 建筑学
    • 26 篇 电子科学与技术(可...
    • 23 篇 化学工程与技术
    • 21 篇 交通运输工程
  • 449 篇 理学
    • 192 篇 生物学
    • 163 篇 数学
    • 125 篇 物理学
    • 56 篇 统计学(可授理学、...
    • 25 篇 化学
    • 19 篇 系统科学
  • 242 篇 管理学
    • 139 篇 图书情报与档案管...
    • 107 篇 管理科学与工程(可...
    • 58 篇 工商管理
  • 103 篇 医学
    • 89 篇 临床医学
    • 61 篇 基础医学(可授医学...
    • 38 篇 药学(可授医学、理...
    • 31 篇 公共卫生与预防医...
  • 73 篇 法学
    • 72 篇 社会学
  • 67 篇 教育学
    • 56 篇 教育学
  • 13 篇 经济学
  • 12 篇 农学
  • 7 篇 文学
  • 4 篇 艺术学
  • 3 篇 军事学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 63 篇 computer science
  • 63 篇 human computer i...
  • 48 篇 user interfaces
  • 47 篇 virtual reality
  • 42 篇 visualization
  • 31 篇 data visualizati...
  • 26 篇 semantics
  • 25 篇 humans
  • 25 篇 students
  • 22 篇 educational inst...
  • 17 篇 three-dimensiona...
  • 17 篇 robots
  • 17 篇 augmented realit...
  • 17 篇 usability
  • 17 篇 games
  • 17 篇 training
  • 16 篇 data mining
  • 16 篇 artificial intel...
  • 16 篇 testing
  • 15 篇 application soft...

机构

  • 80 篇 department of co...
  • 78 篇 moe key lab of a...
  • 58 篇 key laboratory o...
  • 32 篇 human-computer i...
  • 29 篇 key lab. of shan...
  • 18 篇 human-computer i...
  • 15 篇 guangxi key lab ...
  • 13 篇 shenzhen key lab...
  • 12 篇 tsinghua univers...
  • 9 篇 key lab. of shan...
  • 9 篇 human-robot inte...
  • 9 篇 department of co...
  • 9 篇 beijing key lab ...
  • 8 篇 department of co...
  • 8 篇 university of ch...
  • 8 篇 human computer i...
  • 8 篇 human-computer i...
  • 7 篇 microsoft resear...
  • 7 篇 the department o...
  • 7 篇 department of in...

作者

  • 101 篇 zhao hai
  • 44 篇 zhang zhuosheng
  • 41 篇 shneiderman ben
  • 28 篇 bederson benjami...
  • 27 篇 ben shneiderman
  • 27 篇 li zuchao
  • 25 篇 bowman doug a.
  • 25 篇 doug a. bowman
  • 17 篇 yu kai
  • 16 篇 wang rui
  • 14 篇 petrie helen
  • 13 篇 plaisant catheri...
  • 13 篇 utiyama masao
  • 12 篇 b. shneiderman
  • 11 篇 heng pheng-ann
  • 11 篇 chen lu
  • 10 篇 zhou xiang
  • 10 篇 sumita eiichiro
  • 10 篇 north chris
  • 9 篇 huang faliang

语言

  • 1,411 篇 英文
  • 86 篇 其他
  • 6 篇 中文
  • 1 篇 法文
检索条件"机构=Department of Computer Science & Human-Computer Interaction Lab"
1504 条 记 录,以下是481-490 订阅
排序:
BURT: BERT-inspired universal representation from learning meaningful segment
arXiv
收藏 引用
arXiv 2020年
作者: Li, Yian Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University China Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University China
Although pre-trained contextualized language models such as BERT achieve significant performance on various downstream tasks, current language representation focuses on linguistic objective at a specific granularity. ... 详细信息
来源: 评论
SG-Net: Syntax guided transformer for language representation
arXiv
收藏 引用
arXiv 2020年
作者: Zhang, Zhuosheng Wu, Yuwei Zhou, Junru Duan, Sufeng Zhao, Hai Wang, Rui Department of Computer Science and Engineering Shanghai Jiao Tong University China Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University China
Understanding human language is one of the key themes of artificial intelligence. For language representation, the capacity of effectively modeling the linguistic knowledge from the detail-riddled and lengthy texts an... 详细信息
来源: 评论
Transdisciplinary reflections on social robotics in academia and beyond  3
Transdisciplinary reflections on social robotics in academia...
收藏 引用
3rd International Conference on Robophilosophy 2018 / Transor 2018: Envisioning Robots in Society - Politics, Power, and Public Space
作者: Hannibal, Glenda Lindner, Felix Vienna University of Technology Institute of Visual Computing and Human-Centered Technology Research Division of Human Computer Interaction Argentinierstraße 8 Vienna1040 Austria Department of Computer Science University of Freiburg Germany
来源: 评论
Reference language based unsupervised neural machine translation
arXiv
收藏 引用
arXiv 2020年
作者: Li, Zuchao Zhao, Hai Wang, Rui Utiyama, Masao Sumita, Eiichiro Department of Computer Science and Engineering Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Kyoto Japan
Exploiting common language as an auxiliary for better translation has a long tradition in machine translation, which lets supervised learning based machine translation enjoy the enhancement delivered by the well-used ... 详细信息
来源: 评论
Multi-choice Dialogue-Based Reading Comprehension with Knowledge and Key Turns
arXiv
收藏 引用
arXiv 2020年
作者: Li, Junlong Zhang, Zhuosheng Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China
Multi-choice machine reading comprehension (MRC) requires models to choose the correct answer from candidate options given a passage and a question. Our research focuses dialogue-based MRC, where the passages are mult... 详细信息
来源: 评论
Learning universal representations from word to sentence
arXiv
收藏 引用
arXiv 2020年
作者: Li, Yian Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University China Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University China
Despite the well-developed cut-edge representation learning for language, most language representation models usually focus on specific level of linguistic unit, which cause great inconvenience when being confronted w... 详细信息
来源: 评论
Strategic priorities for transformative progress in advancing biology with proteomics and artificial intelligence
arXiv
收藏 引用
arXiv 2025年
作者: Sun, Yingying Jun, A. Liu, Zhiwei Sun, Rui Qian, Liujia Payne, Samuel H. Bittremieux, Wout Ralser, Markus Li, Chen Chen, Yi Dong, Zhen Perez-Riverol, Yasset Khan, Asif Sander, Chris Aebersold, Ruedi Vizcaíno, Juan Antonio Krieger, Jonathan R. Yao, Jianhua Wen, Han Zhang, Linfeng Zhu, Yunping Xuan, Yue Sun, Benjamin Boyang Qiao, Liang Hermjakob, Henning Tang, Haixu Gao, Huanhuan Deng, Yamin Zhong, Qing Chang, Cheng Bandeira, Nuno Li, Ming Weinan, E. Sun, Siqi Yang, Yuedong Omenn, Gilbert S. Zhang, Yue Xu, Ping Fu, Yan Liu, Xiaowen Overall, Christopher M. Wang, Yu Deutsch, Eric W. Chen, Luonan Cox, Jürgen Demichev, Vadim He, Fuchu Huang, Jiaxing Jin, Huilin Liu, Chao Li, Nan Luan, Zhongzhi Song, Jiangning Yu, Kaicheng Wan, Wanggen Wang, Tai Zhang, Kang Zhang, Le Bell, Peter A. Mann, Matthias Zhang, Bing Guo, Tiannan Affiliated Hangzhou First People’s Hospital State Key Laboratory of Medical Proteomics School of Medicine Westlake University Zhejiang Province Hangzhou China Westlake Center for Intelligent Proteomics Westlake Laboratory of Life Sciences and Biomedicine Zhejiang Province Hangzhou China Biology Department Brigham Young University ProvoUT84602 United States Department of Computer Science University of Antwerp Antwerp2020 Belgium Department of Biochemistry CharitéUniversitätsmedizin Berlin Berlin Germany Biomedicine Discovery Institute Department of Biochemistry and Molecular Biology Monash University MelbourneVICVIC 3800 Australia Wellcome Genome Campus Hinxton CambridgeCB10 1SD United Kingdom Harvard Medical School Ludwig Center at Harvard United States Harvard Medical School Broad Institute Ludwig Center at Harvard Dana-Farber Cancer Institute United States Department of Biology Institute of Molecular Systems Biology ETH Zürich Zürich Switzerland Bruker Ltd. MiltonONL9T 6P4 Canada AI for Life Sciences Lab Tencent Shenzhen518057 China State Key Laboratory of Medical Proteomics AI for Science Institute Beijing100080 China Beijing Institute of Lifeomics Beijing102206 China Thermo Fisher Scientific GmbH Hanna-Kunath Str. 11 Bremen28199 Germany Informatics and Predictive Sciences Research Bristol Myers Squibb United States Department of Chemistry Fudan University Songhu Road 2005 Shanghai200438 China Department of Computer Science Luddy School of Informatics Computing and Engineering Indiana University IN47408 United States ProCan® Children’s Medical Research Institute Faculty of Medicine and Health The University of Sydney WestmeadNSW Australia La Jolla CA United States Central China Institute of Artificial Intelligence University of Waterloo Canada AI for Science Institute Center for Machine Learning Research School of Mathematical Sciences Peking University China Research Institute of Intelligent Complex Systems Fudan U
Artificial intelligence (AI) is transforming scientific research, including proteomics. Advances in mass spectrometry (MS)-based proteomics data quality, diversity, and scale, combined with groundbreaking AI technique... 详细信息
来源: 评论
Bipartite Flat-Graph Network for Nested Named Entity Recognition
arXiv
收藏 引用
arXiv 2020年
作者: Luo, Ying Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China
In this paper, we propose a novel bipartite flat-graph network (BiFlaG) for nested named entity recognition (NER), which contains two subgraph modules: a flat NER module for outermost entities and a graph module for a... 详细信息
来源: 评论
Semantics-Aware Inferential Network for Natural Language Understanding
arXiv
收藏 引用
arXiv 2020年
作者: Zhang, Shuailiang Zhao, Hai Zhou, Junru Department of Computer Science and Engineering Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China
For natural language understanding tasks, either machine reading comprehension or natural language inference, both semantics-aware and inference are favorable features of the concerned modeling for better understandin... 详细信息
来源: 评论
Dialogue graph modeling for conversational machine reading
arXiv
收藏 引用
arXiv 2020年
作者: Ouyang, Siru Zhang, Zhuosheng Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China
Conversational Machine Reading (CMR) aims at answering questions in complicated interactive scenarios. Machine needs to answer questions through interactions with users based on given rule document, user scenario and ... 详细信息
来源: 评论