咨询与建议

限定检索结果

文献类型

  • 1,037 篇 期刊文献
  • 625 篇 会议
  • 20 册 图书

馆藏范围

  • 1,682 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,146 篇 工学
    • 718 篇 计算机科学与技术...
    • 547 篇 软件工程
    • 214 篇 信息与通信工程
    • 172 篇 控制科学与工程
    • 166 篇 电气工程
    • 142 篇 电子科学与技术(可...
    • 111 篇 生物工程
    • 100 篇 生物医学工程(可授...
    • 95 篇 光学工程
    • 87 篇 机械工程
    • 79 篇 材料科学与工程(可...
    • 64 篇 动力工程及工程热...
    • 59 篇 化学工程与技术
    • 49 篇 仪器科学与技术
    • 45 篇 交通运输工程
    • 40 篇 力学(可授工学、理...
  • 851 篇 理学
    • 398 篇 数学
    • 303 篇 物理学
    • 151 篇 生物学
    • 130 篇 统计学(可授理学、...
    • 109 篇 系统科学
    • 77 篇 化学
  • 268 篇 管理学
    • 185 篇 管理科学与工程(可...
    • 108 篇 工商管理
    • 94 篇 图书情报与档案管...
  • 96 篇 医学
    • 85 篇 临床医学
    • 68 篇 基础医学(可授医学...
    • 42 篇 药学(可授医学、理...
    • 30 篇 公共卫生与预防医...
  • 46 篇 法学
    • 41 篇 社会学
  • 30 篇 经济学
  • 25 篇 农学
  • 22 篇 教育学
  • 1 篇 哲学
  • 1 篇 文学
  • 1 篇 历史学
  • 1 篇 艺术学

主题

  • 19 篇 machine learning
  • 19 篇 artificial intel...
  • 12 篇 semantics
  • 11 篇 decision making
  • 10 篇 covid-19
  • 10 篇 computer science
  • 9 篇 deep learning
  • 9 篇 stylometry
  • 9 篇 software enginee...
  • 9 篇 feature selectio...
  • 9 篇 multi agent syst...
  • 8 篇 reinforcement le...
  • 8 篇 image segmentati...
  • 8 篇 optimization
  • 8 篇 stochastic syste...
  • 8 篇 energy efficienc...
  • 7 篇 neural networks
  • 7 篇 quality of servi...
  • 7 篇 authorship attri...
  • 7 篇 hardware

机构

  • 20 篇 school of engine...
  • 15 篇 optical sciences...
  • 12 篇 department of el...
  • 12 篇 department of ph...
  • 11 篇 department of el...
  • 11 篇 inrs-énergie mat...
  • 11 篇 department of el...
  • 9 篇 department of el...
  • 9 篇 department of el...
  • 9 篇 the department o...
  • 9 篇 department of ph...
  • 9 篇 department of gr...
  • 8 篇 institute of fun...
  • 8 篇 department of gr...
  • 8 篇 the school of co...
  • 8 篇 faculty of engin...
  • 8 篇 state key labora...
  • 8 篇 systems research...
  • 7 篇 xi’an institute ...
  • 7 篇 department of el...

作者

  • 37 篇 pedrycz witold
  • 18 篇 moss david j.
  • 18 篇 morandotti rober...
  • 16 篇 niyato dusit
  • 16 篇 péter gáspár
  • 16 篇 tan mengxi
  • 16 篇 chu sai t.
  • 16 篇 xu xingyuan
  • 16 篇 mitchell arnan
  • 16 篇 little brent e.
  • 15 篇 morandotti r.
  • 14 篇 wu jiayang
  • 14 篇 boes andreas
  • 14 篇 nguyen thach g.
  • 14 篇 corcoran bill
  • 13 篇 shen xuemin
  • 12 篇 stanczyk urszula
  • 12 篇 balázs németh
  • 12 篇 xiong zehui
  • 12 篇 urszula stańczyk

语言

  • 1,537 篇 英文
  • 134 篇 其他
  • 7 篇 中文
  • 4 篇 日文
检索条件"机构=Department of Computer Science 2: Programming Systems"
1682 条 记 录,以下是531-540 订阅
排序:
Modelling Hybrid Acoustofluidic Devices for Enhancing Nano- and Mirco-Particle Manipulation in Microfluidics
SSRN
收藏 引用
SSRN 2022年
作者: Wang, Hanlin Yuan, Fan Xie, Zhihua Sun, Chao Wu, Fangda Mikhaylov, Roman Shen, Minghong Yang, Jian Zhou, You Liang, Dongfang Sun, Xianfang Wu, Zhenlin Yang, Zhiyong Yang, Xin Department of Electrical and Electronic Engineering School of Engineering Cardiff University CF24 3AA United Kingdom Department of Biomedical Engineering School of Engineering Duke University NC27708-0281 United States Department of Civil Engineering School of Engineering Cardiff University CF24 3AA United Kingdom School of Life Sciences Northwestern Polytechnical University 710072 China Division of Cancer and Genetics School of Medicine Cardiff University CF14 4XN United Kingdom Systems Immunity Research Institute School of Medicine Cardiff University CF14 4XN United Kingdom Department of Engineering University of Cambridge CB2 1PZ United Kingdom School of Computer Science Cardiff University CF24 3AA United Kingdom School of Optoelectronic Engineering and Instrumentation Science Dalian University of Technology 116023 China School of Mechanical Engineering Tianjin University 300072 China
Acoustofluidic techniques are increasingly used to manipulate nano- and micro-particles in microfluidics. A wide range of acoustofluidic devices integrating microchannel and acoustic sources have been developed for ap... 详细信息
来源: 评论
Control design considering magnetic flux characteristic uncertainty for magnetic levitation system with magnetic flux and current feedback
IEEJ Transactions on Electronics, Information and Systems
收藏 引用
IEEJ Transactions on Electronics, Information and systems 2019年 第10期139卷 1159-1166页
作者: Urasaki, Shinpachiro Kobayashi, Yoshimitsu Kami, Yasushi Mitani, Yuichiroh Nobuyama, Eitaku Department of Electronic Control Engineering National Institute of Technology Gifu College 2236-2. Kamimakuwa. Motosu. Gifu 501-0495 Japan Department of Electrical and Computer Engineering National Institute of Technology Akashi College 679-3. Nishioka. Uozumi Akashi. Hyogo674-8501 Japan Department of Mechanical Engineering National Institute of Technology Numazu College 3600. Ooka. Numazu Shizuoka410-8501 Japan Department of Systems Innovation and Informatics Faculty of Computer Science and System Engineering Kyushu Institute of Technology 680-4.Kawazu. Iizuka Fukuoka820-8502 Japan
This paper describes control design considering magnetic flux characteristic uncertainty for magnetic levitation system with magnetic flux and current feedback. The position of the levitated object is calculated from ... 详细信息
来源: 评论
The Quantum Internet (Technical Version)
arXiv
收藏 引用
arXiv 2025年
作者: Rohde, Peter P. Huang, Zixin Ouyang, Yingkai Huang, He-Liang Su, Zu-En Devitt, Simon Ramakrishnan, Rohit Mantri, Atul Tan, Si-Hui Liu, Nana Harrison, Scott Radhakrishnan, Chandrashekar Brennen, Gavin K. Baragiola, Ben Q. Dowling, Jonathan P. Byrnes, Tim Munro, William J. Centre for Quantum Software and Information Faculty of Engineering and Information Technology University of Technology Sydney SydneyNSW Australia Hearne Institute for Theoretical Physics Louisiana State University Baton Rouge United States School of Mathematical and Physical Sciences Macquarie University NSW2109 Australia School of Mathematical and Physical Sciences University of Sheffield SheffieldS3 7RH United Kingdom Henan Key Laboratory of Quantum Information and Cryptography Henan Zhengzhou450000 China Hefei National Laboratory for Physical Sciences at Microscale Department of Modern Physics University of Science & Technology of China Hefei China CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information & Quantum Physics University of Science & Technology of China Hefei China CAS-Alibaba Quantum Computing Laboratory Shanghai China InstituteQ Aalto University Espoo02150 Finland Indian Institute of Science Bangalore India Singapore University of Technology & Design Singapore Centre for Quantum Technologies National University of Singapore Singapore Horizon Quantum Ireland 24 Fitzwilliam Place Dublin 2 D02 T296 Ireland Institute of Natural Sciences Shanghai Jiao Tong University Shanghai200240 China School of Mathematical Sciences Shanghai Jiao Tong University Shanghai200240 China Ministry of Education Key Laboratory in Scientific and Engineering Computing Shanghai Jiao Tong University Shanghai200240 China Shanghai Artificial Intelligence Laboratory Shanghai China University of Michigan Shanghai Jiao Tong University Joint Institute Shanghai200240 China Leibniz Institute for Research & Information in Education Frankfurt am Main Germany Department of Computer Science and Engineering NYU Shanghai 567 West Yangsi Road Shanghai200124 China Centre of Excellence in Engineered Quantum Systems Macquarie University NSW Australia Centre for Quantum Computation and Communication Technology School of Science RMIT University VIC
The desire to share and unite remote digital assets motivated the development of the classical internet, the enabler of the entire 21st century economy and our modern way of life. As we enter the quantum era, it is to... 详细信息
来源: 评论
Input optics systems of the KAGRA detector during O3GK (vol 2023, 023F01, 2023)
收藏 引用
PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS 2023年 第5期2023卷
作者: Akutsu, T. Ando, M. Arai, K. Arai, Y. Araki, S. Araya, A. Aritomi, N. Asada, H. Aso, Y. Bae, S. Bae, Y. Baiotti, L. Bajpai, R. Barton, M. A. Cannon, K. Cao, Z. Capocasa, E. Chan, M. Chen, C. Chen, K. Chen, Y. Chiang, C-I Chu, H. Chu, Y-K Eguchi, S. Enomoto, Y. Flaminio, R. Fujii, Y. Fujikawa, Y. Fukunaga, M. Fukushima, M. Furuhata, T. Gao, D. Ge, G-G Ha, S. Hagiwara, A. Haino, S. Han, W-B Hasegawa, K. Hattori, K. Hayakawa, H. Hayama, K. Himemoto, Y. Hiranuma, Y. Hirata, N. Hirose, E. Hong, Z. Hsieh, B-H Huang, G-Z Huang, H-Y Huang, P. Huang, Y-C Huang, Y-J Hui, D. C. Y. Ide, S. Ikenoue, B. Imam, S. Inayoshi, K. Inoue, Y. Ioka, K. Ito, K. Itoh, Y. Izumi, K. Jeon, C. Jin, H-B Jung, K. Jung, P. Kaihotsu, K. Kajita, T. Kakizaki, M. Kamiizumi, M. Kanbara, S. Kanda, N. Kang, G. Kataoka, Y. Kawaguchi, K. Kawai, N. Kawasaki, T. Kim, C. Kim, J. Kim, J. C. Kim, Ws Kim, Y-M Kimura, N. Kita, N. Kitazawa, H. Kojima, Y. Kokeyama, K. Komori, K. Kong, A. K. H. Kotake, K. Kozakai, C. Kozu, R. Kumar, R. Kume, J. Kuo, C. Kuo, H-S Kuromiya, Y. Kuroyanagi, S. Kusayanagi, K. Kwak, K. Lee, H. K. Lee, H. W. Lee, R. Leonardi, M. Li, K. L. Lin, L. C-C Lin, C-Y Lin, F-K Lin, F-L Lin, H. L. Liu, G. C. Luo, L-W Majorana, E. Marchio, M. Michimura, Y. Mio, N. Miyakawa, O. Miyamoto, A. Miyazaki, Y. Miyo, K. Miyoki, S. Mori, Y. Morisaki, S. Moriwaki, Y. Nagano, K. Nagano, S. Nakamura, K. Nakano, H. Nakano, M. Nakashima, R. Nakayama, Y. Narikawa, T. Naticchioni, L. Negishi, R. Quynh, L. Nguyen Ni, W-T Nishizawa, A. Nozaki, S. Obuchi, Y. Ogaki, W. Oh, J. J. Oh, S. H. Ohashi, M. Ohishi, N. Ohkawa, M. Ohta, H. Okutani, Y. Okutomi, K. Oohara, K. Ooi, C. Oshino, S. Otabe, S. Pan, K-C Pang, H. Parisi, A. Park, J. Arellano, F. E. Pena Pinto, I. Sago, N. Saito, S. Saito, Y. Sakai, K. Sakai, Y. Sakuno, Y. Sato, S. Sato, T. Sawada, T. Sekiguchi, T. Sekiguchi, Y. Shao, L. Shibagaki, S. Shimizu, R. Shimoda, T. Shimode, K. Shinkai, H. Shishido, T. Shoda, A. Somiya, K. Son, E. J. Sotani, H. Sugimoto, R. Suresh, J. Suzuki, T. Suzuki, T. Tagoshi, H. Takahashi, H Gravitational Wave Science Project National Astronomical Observatory of Japan 2-21-1 Osawa Mitaka City Tokyo 181-8588 Japan Advanced Technology Center National Astronomical Observatory of Japan 2-21-1 Osawa Mitaka City Tokyo 181-8588 Japan Department of Physics The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan Research Center for the Early Universe The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan Institute for Cosmic Ray Research KAGRA Observatory The University of Tokyo 5-1-5 Kashiwa-no-Ha Kashiwa City Chiba 277-8582 Japan Accelerator Laboratory High Energy Accelerator Research Organization (KEK) 1-1 Oho Tsukuba City Ibaraki 305-0801 Japan Earthquake Research Institute The University of Tokyo 1-1-1 Yayoi Bunkyo-ku Tokyo 113-0032 Japan Department of Mathematics and Physics Graduate School of Science and Technology Hirosaki University 3 Bunkyo-cho Hirosaki Aomori 036-8561 Japan Kamioka Branch National Astronomical Observatory of Japan 238 Higashi-Mozumi Kamioka-cho Hida City Gifu 506-1205 Japan The Graduate University for Advanced Studies (SOKENDAI) 2-21-1 Osawa Mitaka City Tokyo 181-8588 Japan Korea Institute of Science and Technology Information 245 Daehak-ro Yuseong-gu Daejeon 34141 Republic of Korea National Institute for Mathematical Sciences 70 Yuseong-daero 1689 Beon-gil Yuseong-gu Daejeon 34047 Republic of Korea International College Osaka University 1-1 Machikaneyama-cho Toyonaka City Osaka 560-0043 Japan School of High Energy Accelerator Science The Graduate University for Advanced Studies (SOKENDAI) 1-1 Oho Tsukuba City Ibaraki 305-0801 Japan Department of Astronomy Beijing Normal University Xinjiekouwai Street 19 Haidian District Beijing 100875 China Department of Applied Physics Fukuoka University 8-19-1 Nanakuma Jonan Fukuoka City Fukuoka 814-0180 Japan Department of Physics Tamkang University No. 151 Yingzhuan Road Danshui Dist. New Taipei City 25137 Taiwan Department of Physics
KAGRA, the underground and cryogenic gravitational-wave detector, was operated for its solo observation from February 25 to March 10, 2020, and its first joint observation with the GEO 600 detector from April 7 to Apr...
来源: 评论
Dynamical multiple polynomial-based neural networks classifier realized with the aid of dropfilter and dual statistical selection
收藏 引用
Engineering Applications of Artificial Intelligence 2025年 157卷
作者: Zhen Wang Sung-Kwun Oh Zunwei Fu Seok-Beom Roh Witold Pedrycz Research Center for Big Data and Artificial Intelligence Linyi University Linyi 276005 China School of Automation and Electrical Engineering Linyi University Linyi 276005 Shandong China School of Electrical & Electronic Engineering The University of Suwon 17 Wauan-gil Bongdam-eup Hwaseong-si Gyeonggi-do 18323 South Korea Department of Electronic Engineering Seokyeong University Seoul 02713 South Korea Department of Computer Science The University of Suwon 17 Wauan-gil Bongdam-eup Hwaseong-si Gyeonggi-do 18323 South Korea Department of Electrical and Computer Engineering University of Alberta Edmonton AB T6G 2R3 Canada Systems Research Institute Polish Academy of Sciences 00-901 Warsaw Poland Department of Computer Engineering Faculty of Engineering and Natural Sciences Istinye University Sariyer Istanbul Turkiye
Polynomial neural networks (PNN) have emerged as an effective regression modeling methodology in computational intelligence, relying on its interpretable polynomial nodes to fit complex nonlinear data relationships an...
来源: 评论
A novel ensemble XGBoost and deep Q-network for pregnancy risk prediction on multi-class imbalanced datasets
收藏 引用
ICT Express 2025年
作者: Kurnianingsih Nobukawa, Sou Widyawati, Melyana Nurul Pramana, Cipta Aji, Nurseno Bayu Thohari, Afandi Nur Aziz Hendrawati, Dwiana Sato-Shimokawara, Eri Kubota, Naoyuki Department of Electrical Engineering Politeknik Negeri Semarang H. Soedarto Tembalang Central Java Semarang 50275 Indonesia Department of Computer Science Chiba Institute of Technology 2-17-1 Tsudanuma Chiba Narashino 275-0016 Japan Poltekkes Kemenkes Semarang Tirto Agung Pedalangan Banyumanik Central Java Semarang 50268 Indonesia Department of Obstetrics and Gynecology KRMT Wongsonegoro Hospital Fatmawati Tembalang Central Java Semarang 50272 Indonesia Department of Mechanical Engineering Politeknik Negeri Semarang H. Soedarto Tembalang Central Java Semarang 50275 Indonesia Faculty of Systems Design Tokyo Metropolitan University Tokyo 1910065 Japan
Addressing imbalanced data is essential for accurate prediction. We propose a novel ensemble method of XGBoost and deep Q-learning networks (DQN) for pregnancy risk prediction. First, we train the majority class utili... 详细信息
来源: 评论
Deep learning enabled smart charging technology for electric vehicles
收藏 引用
AIP Conference Proceedings 2022年 第1期2527卷
作者: T. Blesslin Sheeba C. Sharanya C. Nayanatara S. K. Indumathi K. Kalins G. Ignisha Rajathi 1Department of ECE R.M.K. Engineering College Chennai India 2Department of ECE Vels Institute of Science Technology and Advanced Studies Chennai India 3Department of EEE Sri Sairam Engineering College Chennai India 4Centre for Automation and Robotics Hindustan Institute of Technology and Science Chennai India 5Department of Science and Humanities Sri Krishna College of Engineering and Technology Coimbatore India 6Department of Computer Science and Business Systems Sri Krishna College of Engineering and Technology Coimbatore India
Reliability, efficiency, and cost-effectiveness of smart grids are enhanced with power demand softening by means of efficient load management in electric vehicles. In such initiatives, the involvement of EV users may ...
来源: 评论
TOI-2458 b: A mini-Neptune consistent with in situ hot Jupiter formation
arXiv
收藏 引用
arXiv 2024年
作者: Šubjak, Jan Gandolfi, Davide Goffo, Elisa Rapetti, David Jankowski, Dawid Mizuki, Toshiyuki Dai, Fei Serrano, Luisa M. Wilson, Thomas G. Goździewski, Krzysztof Nowak, Grzegorz Jenkins, Jon M. Twicken, Joseph D. Winn, Joshua N. Bieryla, Allyson Ciardi, David R. Cochran, William D. Collins, Karen A. Deeg, Hans J. Garcia, Rafael A. Guenther, Eike W. Hatzes, Artie P. Kabath, Petr Korth, Judith Latham, David W. Livingston, John H. Lund, Michael B. Mathur, Savita Narita, Norio Orell-Miquel, Jaume Palle, Enric Persson, Carina M. Redfield, Seth Schwarz, Richard P. Watanabe, David Ziegler, Carl Astronomical Institute Czech Academy of Sciences Fričova 298 Ondřejov251 65 Czech Republic Center for Astrophysics | Harvard & Smithsonian 60 Garden Street CambridgeMA02138 United States Dipartimento di Fisica Universita degli Studi di Torino via Pietro Giuria 1 TorinoI-10125 Italy Thuringer Landessternwarte Tautenburg Sternwarte 5 Tautenburg07778 Germany NASA Ames Research Center Moffett FieldCA94035 United States Research Institute for Advanced Computer Science Universities Space Research Association WashingtonDC20024 United States Institute of Astronomy Faculty of Physics Astronomy and Informatics Nicolaus Copernicus University Grudziadzka 5 Toruń87-100 Poland Astrobiology Center of NINS 2-21-1 Osawa Mitaka Tokyo181-8588 Japan National Astronomical Observatory of Japan 2-21-2 Osawa Mitaka Tokyo181-8588 Japan Institute for Astronomy University of Hawai'i 2680 Woodlawn Drive HonoluluHI96822 United States Department of Physics University of Warwick Gibbet Hill Road CoventryCV4 7AL United Kingdom SETI Institute Mountain ViewCA94043 United States Department of Astrophysical Sciences Princeton University PrincetonNJ08544 United States NASA Exoplanet Science Institute-Caltech/IPAC PasadenaCA91125 United States McDonald Observatory The University of Texas AustinTX United States Center for Planetary Systems Habitability The University of Texas AustinTX United States C. Via Lactea S/N Tenerife La LagunaE-38205 Spain Dept. de Astrofisica Tenerife La LagunaE-38206 Spain Universite Paris-Saclay Universite Paris Cite CEA CNRS AIM Gif-sur-Yvette91191 France Lund Observatory Division of Astrophysics Department of Physics Lund University Box 118 Lund22100 Sweden Astronomical Science Program Graduate University for Advanced Studies SOKENDAI 2-21-1 Osawa Mitaka Tokyo181-8588 Japan Komaba Institute for Science The University of Tokyo 3-8-1 Komaba Meguro Tokyo153-8902 Japan Chalmers University of Technology Departmen
We report on the discovery and spectroscopic confirmation of TOI-2458 b, a transiting mini-Neptune around an F-type star leaving the mainsequence with a mass of M*= 1.05 ± 0.03Mo, a radius of R*= 1.31 ± 0.03... 详细信息
来源: 评论
Deformations of unitary Howe dual pairs
arXiv
收藏 引用
arXiv 2020年
作者: Ciubotaru, Dan de Bie, Hendrik de Martino, Marcelo Oste, Roy Mathematical Institute University of Oxford OxfordOX2 6GG United Kingdom Department of Electronics and Information Systems Ghent University Krijgslaan 281 Gent9000 Belgium Department of Applied Mathematics Computer Science and Statistics Ghent University Krijgslaan 281-S9 Gent9000 Belgium
We study deformations of the Howe dual pairs (U(n), u(1, 1)) and (U(n), u(2|1)) to the context of a rational Cherednik algebra H1,c(G, E) associated with a real reflection group G acting on a real vector space E of ev... 详细信息
来源: 评论
An investigation of interpretability techniques for deep learning in predictive process analytics
arXiv
收藏 引用
arXiv 2020年
作者: Moreira, Catarina Sindhgatta, Renuka Ouyang, Chun Bruza, Peter Wichert, Andreas School of Information Systems Science and Engineering Faculty of Queensland University of Technology 2 George St Brisbane City BrisbaneQLD4000 Australia Department of Computer Science and Engineering Instituto Superior Técnico / INESC-ID University of Lisbon Av. Prof. Dr. Cavaco Silva Porto Salvo2744-016 Portugal
This paper explores interpretability techniques for two of the most successful learning algorithms in medical decision-making literature: deep neural networks and random forests. We applied these algorithms in a real-... 详细信息
来源: 评论