The Internet of Things(IoT)is emerging as an innovative phenomenon concerned with the development of numerous vital *** the development of IoT devices,huge amounts of information,including users’private data,are *** ...
详细信息
The Internet of Things(IoT)is emerging as an innovative phenomenon concerned with the development of numerous vital *** the development of IoT devices,huge amounts of information,including users’private data,are *** systems face major security and data privacy challenges owing to their integral features such as scalability,resource constraints,and *** challenges are intensified by the fact that IoT technology frequently gathers and conveys complex data,creating an attractive opportunity for *** address these challenges,artificial intelligence(AI)techniques,such as machine learning(ML)and deep learning(DL),are utilized to build an intrusion detection system(IDS)that helps to secure IoT *** learning(FL)is a decentralized technique that can help to improve information privacy and performance by training the IDS on discrete linked *** delivers an effectual tool to defend user confidentiality,mainly in the field of IoT,where IoT devices often obtain privacy-sensitive personal *** study develops a Privacy-Enhanced Federated Learning for Intrusion Detection using the Chameleon Swarm Algorithm and Artificial Intelligence(PEFLID-CSAAI)*** main aim of the PEFLID-CSAAI method is to recognize the existence of attack behavior in IoT ***,the PEFLIDCSAAI technique involves data preprocessing using Z-score normalization to transformthe input data into a beneficial ***,the PEFLID-CSAAI method uses the Osprey Optimization Algorithm(OOA)for the feature selection(FS)*** the classification of intrusion detection attacks,the Self-Attentive Variational Autoencoder(SA-VAE)technique can be ***,the Chameleon Swarm Algorithm(CSA)is applied for the hyperparameter finetuning process that is involved in the SA-VAE model.A wide range of experiments were conducted to validate the execution of the PEFLID-CSAAI *** simulated outcomes demonstrated that the PEFLID-CSAAI
Maintaining a regular daily activity routine is essential for overall health and well-being. Wearable sensors offer a convenient way to track daily activities, but accurately identifying a wide range of activities rem...
详细信息
Blockchain technology has emerged as a key enabler for achieving the United Nations' Sustainable Development Goals (SDGs) by offering transparent, decentralized solutions across multiple sectors. However, its inhe...
详细信息
When ensuring the reliability of device or the suitability of a material, it is necessary to take into consideration the stress cases in the operating environment. This means that the uncertainty about the reality env...
详细信息
Deep learning algorithms have been rapidly incorporated into many different applications due to the increase in computational power and the availability of massive amounts of ***,both deep learning and ensemble learni...
详细信息
Deep learning algorithms have been rapidly incorporated into many different applications due to the increase in computational power and the availability of massive amounts of ***,both deep learning and ensemble learning have been used to recognize underlying structures and patterns from high-level features to make predictions/*** the growth in popularity of deep learning and ensemble learning algorithms,they have received significant attention from both scientists and the industrial community due to their superior ability to learn features from big *** deep learning has exhibited significant performance in enhancing learning generalization through the use of multiple deep learning *** ensemble deep learning has large quantities of training parameters,which results in time and space overheads,it performs much better than traditional ensemble *** deep learning has been successfully used in several areas,such as bioinformatics,finance,and health *** this paper,we review and investigate recent ensemble deep learning algorithms and techniques in health care domains,medical imaging,health care data analytics,genomics,diagnosis,disease prevention,and drug *** cover several widely used deep learning algorithms along with their architectures,including deep neural networks(DNNs),convolutional neural networks(CNNs),recurrent neural networks(RNNs),and generative adversarial networks(GANs).Common healthcare tasks,such as medical imaging,electronic health records,and genomics,are also ***,in this review,the challenges inherent in reducing the burden on the healthcare system are discussed and ***,future directions and opportunities for enhancing healthcare model performance are discussed.
The effective and timely diagnosis and treatment of ocular diseases are key to the rapid recovery of ***,the mass disease that needs attention in this context is *** deep learning has significantly advanced the analys...
详细信息
The effective and timely diagnosis and treatment of ocular diseases are key to the rapid recovery of ***,the mass disease that needs attention in this context is *** deep learning has significantly advanced the analysis of ocular disease images,there is a need for a probabilistic model to generate the distributions of potential outcomes and thusmake decisions related to uncertainty ***,this study implements a Bayesian Convolutional Neural Networks(BCNN)model for predicting cataracts by assigning probability values to the *** prepares convolutional neural network(CNN)and BCNN *** proposed BCNN model is CNN-based in which reparameterization is in the first and last layers of the CNN *** study then trains them on a dataset of cataract images filtered from the ocular disease fundus images *** deep CNN model has an accuracy of 95%,while the BCNN model has an accuracy of 93.75% along with information on uncertainty estimation of cataracts and normal eye *** compared with other methods,the proposed work reveals that it can be a promising solution for cataract prediction with uncertainty estimation.
App reviews are crucial in influencing user decisions and providing essential feedback for developers to improve their *** the analysis of these reviews is vital for efficient review *** traditional machine learning(M...
详细信息
App reviews are crucial in influencing user decisions and providing essential feedback for developers to improve their *** the analysis of these reviews is vital for efficient review *** traditional machine learning(ML)models rely on basic word-based feature extraction,deep learning(DL)methods,enhanced with advanced word embeddings,have shown superior *** research introduces a novel aspectbased sentiment analysis(ABSA)framework to classify app reviews based on key non-functional requirements,focusing on usability factors:effectiveness,efficiency,and *** propose a hybrid DL model,combining BERT(Bidirectional Encoder Representations from Transformers)with BiLSTM(Bidirectional Long Short-Term Memory)and CNN(Convolutional Neural Networks)layers,to enhance classification *** analysis against state-of-the-art models demonstrates that our BERT-BiLSTM-CNN model achieves exceptional performance,with precision,recall,F1-score,and accuracy of 96%,87%,91%,and 94%,*** contributions of this work include a refined ABSA-based relabeling framework,the development of a highperformance classifier,and the comprehensive relabeling of the Instagram App Reviews *** advancements provide valuable insights for software developers to enhance usability and drive user-centric application development.
An imbalanced dataset often challenges machine learning, particularly classification methods. Underrepresented minority classes can result in biased and inaccurate models. The Synthetic Minority Over-Sampling Techniqu...
详细信息
An imbalanced dataset often challenges machine learning, particularly classification methods. Underrepresented minority classes can result in biased and inaccurate models. The Synthetic Minority Over-Sampling Technique (SMOTE) was developed to address the problem of imbalanced data. Over time, several weaknesses of the SMOTE method have been identified in generating synthetic minority class data, such as overlapping, noise, and small disjuncts. However, these studies generally focus on only one of SMOTE’s weaknesses: noise or overlapping. Therefore, this study addresses both issues simultaneously by tackling noise and overlapping in SMOTE-generated data. This study proposes a combined approach of filtering, clustering, and distance modification to reduce noise and overlapping produced by SMOTE. Filtering removes minority class data (noise) located in majority class regions, with the k-nn method applied for filtering. The use of Noise Reduction (NR), which removes data that is considered noise before applying SMOTE, has a positive impact in overcoming data imbalance. Clustering establishes decision boundaries by partitioning data into clusters, allowing SMOTE with modified distance metrics to generate minority class data within each cluster. This SMOTE clustering and distance modification approach aims to minimize overlap in synthetic minority data that could introduce noise. The proposed method is called “NR-Clustering SMOTE,” which has several stages in balancing data: (1) filtering by removing minority classes close to majority classes (data noise) using the k-nn method;(2) clustering data using K-means aims to establish decision boundaries by partitioning data into several clusters;(3) applying SMOTE oversampling with Manhattan distance within each cluster. Test results indicate that the proposed NR-Clustering SMOTE method achieves the best performance across all evaluation metrics for classification methods such as Random Forest, SVM, and Naїve Bayes, compared t
Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy *** key requirement for such systems is the preservation of user privacy,ensuring a seamless experience in driv...
详细信息
Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy *** key requirement for such systems is the preservation of user privacy,ensuring a seamless experience in driving,navigation,and *** privacy needs are influenced by various factors,such as data collected at different intervals,trip durations,and user *** address this,the paper proposes a Support Vector Machine(SVM)model designed to process large amounts of aggregated data and recommend privacy preserving *** model analyzes data based on user demands and interactions with service providers or neighboring *** aims to minimize privacy risks while ensuring service continuity and *** SVMmodel helps validate the system’s reliability by creating a hyperplane that distinguishes between maximum and minimum privacy *** results demonstrate the effectiveness of the proposed SVM model in enhancing both privacy and service performance.
Knowledge graphs(KGs) effectively mitigate data sparsity in recommendation systems(RSs) by providing valuable auxiliary information [1]. However, traditional centralized KG-based RSs increase the risk of user privacy ...
Knowledge graphs(KGs) effectively mitigate data sparsity in recommendation systems(RSs) by providing valuable auxiliary information [1]. However, traditional centralized KG-based RSs increase the risk of user privacy *** learning(FL) enhances RS's privacy by enabling model training on decentralized data [2]. Although integrating KG and FL can address both data sparsity and privacy issues in RSs [3], several challenges persist. CH1,Each client's local model relies on a consistent global model from the server, limiting personalized deployment to endusers.
暂无评论