The continuous monitoring and analysis of system logs are essential for ensuring the stability, security, and performance of modern digital systems. However, the sheer volume and complexity of log data pose significan...
详细信息
Super-resolution techniques are employed to enhance image resolution by reconstructing high-resolution images from one or more low-resolution ***-resolution is of paramount importance in the context of remote sensing,...
详细信息
Super-resolution techniques are employed to enhance image resolution by reconstructing high-resolution images from one or more low-resolution ***-resolution is of paramount importance in the context of remote sensing,satellite,aerial,security and surveillance ***-resolution remote sensing imagery is essential for surveillance and security purposes,enabling authorities to monitor remote or sensitive areas with greater *** study introduces a single-image super-resolution approach for remote sensing images,utilizing deep shearlet residual learning in the shearlet transform domain,and incorporating the Enhanced Deep Super-Resolution network(EDSR).Unlike conventional approaches that estimate residuals between high and low-resolution images,the proposed approach calculates the shearlet coefficients for the desired high-resolution image using the provided low-resolution image instead of estimating a residual image between the high-and low-resolution *** shearlet transform is chosen for its excellent sparse approximation ***,remote sensing images are transformed into the shearlet domain,which divides the input image into low and high *** shearlet coefficients are fed into the EDSR *** high-resolution image is subsequently reconstructed using the inverse shearlet *** incorporation of the EDSR network enhances training stability,leading to improved generated *** experimental results from the Deep Shearlet Residual Learning approach demonstrate its superior performance in remote sensing image recovery,effectively restoring both global topology and local edge detail information,thereby enhancing image *** to other networks,our proposed approach outperforms the state-of-the-art in terms of image quality,achieving an average peak signal-to-noise ratio of 35 and a structural similarity index measure of approximately 0.9.
An imbalanced dataset often challenges machine learning, particularly classification methods. Underrepresented minority classes can result in biased and inaccurate models. The Synthetic Minority Over-Sampling Techniqu...
详细信息
An imbalanced dataset often challenges machine learning, particularly classification methods. Underrepresented minority classes can result in biased and inaccurate models. The Synthetic Minority Over-Sampling Technique (SMOTE) was developed to address the problem of imbalanced data. Over time, several weaknesses of the SMOTE method have been identified in generating synthetic minority class data, such as overlapping, noise, and small disjuncts. However, these studies generally focus on only one of SMOTE’s weaknesses: noise or overlapping. Therefore, this study addresses both issues simultaneously by tackling noise and overlapping in SMOTE-generated data. This study proposes a combined approach of filtering, clustering, and distance modification to reduce noise and overlapping produced by SMOTE. Filtering removes minority class data (noise) located in majority class regions, with the k-nn method applied for filtering. The use of Noise Reduction (NR), which removes data that is considered noise before applying SMOTE, has a positive impact in overcoming data imbalance. Clustering establishes decision boundaries by partitioning data into clusters, allowing SMOTE with modified distance metrics to generate minority class data within each cluster. This SMOTE clustering and distance modification approach aims to minimize overlap in synthetic minority data that could introduce noise. The proposed method is called “NR-Clustering SMOTE,” which has several stages in balancing data: (1) filtering by removing minority classes close to majority classes (data noise) using the k-nn method;(2) clustering data using K-means aims to establish decision boundaries by partitioning data into several clusters;(3) applying SMOTE oversampling with Manhattan distance within each cluster. Test results indicate that the proposed NR-Clustering SMOTE method achieves the best performance across all evaluation metrics for classification methods such as Random Forest, SVM, and Naїve Bayes, compared t
Breast cancer(BC)is one of the leading causes of death among women worldwide,as it has emerged as the most commonly diagnosed malignancy in *** detection and effective treatment of BC can help save women’s *** an eff...
详细信息
Breast cancer(BC)is one of the leading causes of death among women worldwide,as it has emerged as the most commonly diagnosed malignancy in *** detection and effective treatment of BC can help save women’s *** an efficient technology-based detection system can lead to non-destructive and preliminary cancer detection *** paper proposes a comprehensive framework that can effectively diagnose cancerous cells from benign cells using the Curated Breast Imaging Subset of the Digital Database for Screening Mammography(CBIS-DDSM)data *** novelty of the proposed framework lies in the integration of various techniques,where the fusion of deep learning(DL),traditional machine learning(ML)techniques,and enhanced classification models have been deployed using the curated *** analysis outcome proves that the proposed enhanced RF(ERF),enhanced DT(EDT)and enhanced LR(ELR)models for BC detection outperformed most of the existing models with impressive results.
The cross-view matching of local image features is a fundamental task in visual localization and 3D *** study proposes FilterGNN,a transformer-based graph neural network(GNN),aiming to improve the matching efficiency ...
详细信息
The cross-view matching of local image features is a fundamental task in visual localization and 3D *** study proposes FilterGNN,a transformer-based graph neural network(GNN),aiming to improve the matching efficiency and accuracy of visual *** on high matching sparseness and coarse-to-fine covisible area detection,FilterGNN utilizes cascaded optimal graph-matching filter modules to dynamically reject outlier ***,we successfully adapted linear attention in FilterGNN with post-instance normalization support,which significantly reduces the complexity of complete graph learning from O(N2)to O(N).Experiments show that FilterGNN requires only 6%of the time cost and 33.3%of the memory cost compared with SuperGlue under a large-scale input size and achieves a competitive performance in various tasks,such as pose estimation,visual localization,and sparse 3D reconstruction.
As a result of its aggressive nature and late identification at advanced stages, lung cancer is one of the leading causes of cancer-related deaths. Lung cancer early diagnosis is a serious and difficult challenge that...
详细信息
This research aims to enhance Clinical Decision Support Systems(CDSS)within Wireless Body Area Networks(WBANs)by leveraging advanced machine learning ***,we target the challenges of accurate diagnosis in medical imagi...
详细信息
This research aims to enhance Clinical Decision Support Systems(CDSS)within Wireless Body Area Networks(WBANs)by leveraging advanced machine learning ***,we target the challenges of accurate diagnosis in medical imaging and sequential data analysis using Recurrent Neural Networks(RNNs)with Long Short-Term Memory(LSTM)layers and echo state *** models are tailored to improve diagnostic precision,particularly for conditions like rotator cuff tears in osteoporosis patients and gastrointestinal *** diagnostic methods and existing CDSS frameworks often fall short in managing complex,sequential medical data,struggling with long-term dependencies and data imbalances,resulting in suboptimal accuracy and delayed *** goal is to develop Artificial Intelligence(AI)models that address these shortcomings,offering robust,real-time diagnostic *** propose a hybrid RNN model that integrates SimpleRNN,LSTM layers,and echo state cells to manage long-term dependencies ***,we introduce CG-Net,a novel Convolutional Neural Network(CNN)framework for gastrointestinal disease classification,which outperforms traditional CNN *** further enhance model performance through data augmentation and transfer learning,improving generalization and robustness against data scarcity and *** validation,including 5-fold cross-validation and metrics such as accuracy,precision,recall,F1-score,and Area Under the Curve(AUC),confirms the models’***,SHapley Additive exPlanations(SHAP)and Local Interpretable Model-agnostic Explanations(LIME)are employed to improve model *** findings show that the proposed models significantly enhance diagnostic accuracy and efficiency,offering substantial advancements in WBANs and CDSS.
Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy *** key requirement for such systems is the preservation of user privacy,ensuring a seamless experience in driv...
详细信息
Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy *** key requirement for such systems is the preservation of user privacy,ensuring a seamless experience in driving,navigation,and *** privacy needs are influenced by various factors,such as data collected at different intervals,trip durations,and user *** address this,the paper proposes a Support Vector Machine(SVM)model designed to process large amounts of aggregated data and recommend privacy preserving *** model analyzes data based on user demands and interactions with service providers or neighboring *** aims to minimize privacy risks while ensuring service continuity and *** SVMmodel helps validate the system’s reliability by creating a hyperplane that distinguishes between maximum and minimum privacy *** results demonstrate the effectiveness of the proposed SVM model in enhancing both privacy and service performance.
This work introduces an intrusion detection system (IDS) tailored for industrial internet of things (IIoT) environments based on an optimized convolutional neural network (CNN) model. The model is trained on a dataset...
详细信息
Efficient utilization of Big data in smart cities is crucial for smooth operation of urban environments. Machine learning-enabled big data analytics is essential for optimizing city operations, improving resource mana...
详细信息
暂无评论