咨询与建议

限定检索结果

文献类型

  • 542 篇 会议
  • 393 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 939 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 594 篇 工学
    • 434 篇 计算机科学与技术...
    • 372 篇 软件工程
    • 134 篇 信息与通信工程
    • 66 篇 控制科学与工程
    • 54 篇 生物工程
    • 41 篇 生物医学工程(可授...
    • 38 篇 电气工程
    • 31 篇 机械工程
    • 25 篇 电子科学与技术(可...
    • 22 篇 化学工程与技术
    • 16 篇 光学工程
    • 14 篇 动力工程及工程热...
  • 368 篇 理学
    • 167 篇 物理学
    • 135 篇 数学
    • 89 篇 生物学
    • 65 篇 统计学(可授理学、...
    • 44 篇 系统科学
    • 26 篇 化学
  • 133 篇 管理学
    • 75 篇 图书情报与档案管...
    • 53 篇 管理科学与工程(可...
    • 30 篇 工商管理
  • 78 篇 医学
    • 67 篇 临床医学
    • 48 篇 基础医学(可授医学...
    • 24 篇 公共卫生与预防医...
    • 21 篇 药学(可授医学、理...
  • 53 篇 教育学
    • 38 篇 教育学
    • 26 篇 心理学(可授教育学...
  • 45 篇 法学
    • 43 篇 社会学
  • 21 篇 文学
    • 14 篇 外国语言文学
  • 17 篇 农学
  • 13 篇 经济学
    • 13 篇 应用经济学
  • 2 篇 哲学
  • 2 篇 军事学
  • 1 篇 历史学
  • 1 篇 艺术学

主题

  • 80 篇 speech recogniti...
  • 32 篇 hidden markov mo...
  • 27 篇 training
  • 24 篇 speech
  • 21 篇 semantics
  • 21 篇 machine learning
  • 21 篇 humans
  • 20 篇 computer science
  • 20 篇 machine translat...
  • 20 篇 decoding
  • 18 篇 feature extracti...
  • 16 篇 transducers
  • 15 篇 deep learning
  • 14 篇 computer aided l...
  • 14 篇 neural machine t...
  • 13 篇 natural language...
  • 13 篇 natural language...
  • 12 篇 support vector m...
  • 12 篇 computational li...
  • 11 篇 students

机构

  • 44 篇 apptek gmbh aach...
  • 36 篇 human language t...
  • 29 篇 human language t...
  • 18 篇 human language t...
  • 17 篇 institute of res...
  • 16 篇 human language t...
  • 15 篇 trustworthy huma...
  • 13 篇 department of in...
  • 12 篇 department of la...
  • 11 篇 department of co...
  • 11 篇 computer science...
  • 10 篇 human language t...
  • 9 篇 department of co...
  • 9 篇 human language t...
  • 9 篇 hkust human lang...
  • 9 篇 center for speec...
  • 9 篇 future technolog...
  • 9 篇 school of medici...
  • 8 篇 julius centre fo...
  • 8 篇 computer science...

作者

  • 139 篇 ney hermann
  • 63 篇 schlüter ralf
  • 34 篇 wu dekai
  • 33 篇 hermann ney
  • 22 篇 habernal ivan
  • 18 篇 dredze mark
  • 18 篇 hosseinzadeh meh...
  • 17 篇 ralf schlüter
  • 17 篇 pascale fung
  • 17 篇 zhou wei
  • 16 篇 rahmani amir mas...
  • 15 篇 fung pascale
  • 14 篇 gao yingbo
  • 14 篇 michel wilfried
  • 13 篇 ralf schluter
  • 12 篇 yousefpoor moham...
  • 12 篇 zeineldeen moham...
  • 12 篇 thomas fang zhen...
  • 12 篇 badriyya b.al-on...
  • 12 篇 zeyer albert

语言

  • 924 篇 英文
  • 11 篇 其他
  • 4 篇 中文
检索条件"机构=Department of Computer Science Department of Language and Human Development"
939 条 记 录,以下是131-140 订阅
排序:
Unifying Input and Output Smoothing in Neural Machine Translation  28
Unifying Input and Output Smoothing in Neural Machine Transl...
收藏 引用
28th International Conference on Computational Linguistics, COLING 2020
作者: Gao, Yingbo Liao, Baohao Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
Soft contextualized data augmentation is a recent method that replaces one-hot representation of words with soft posterior distributions of an external language model, smoothing the input of neural machine translation... 详细信息
来源: 评论
Neural language Modeling for Named Entity Recognition  28
Neural Language Modeling for Named Entity Recognition
收藏 引用
28th International Conference on Computational Linguistics, COLING 2020
作者: Lei, Zhihong Wang, Weiyue Dugast, Christian Ney, Hermann Apple Inc. Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University Germany
Regardless of different word embedding and hidden layer structures of the neural architectures that are used in named entity recognition, a conditional random field layer is commonly used for the output. This work pro... 详细信息
来源: 评论
Insertion and deletion models for statistical machine translation
Insertion and deletion models for statistical machine transl...
收藏 引用
2012 Conference of the North American Chapter of the Association for Computational Linguistics: human language Technologies, NAACL HLT 2012
作者: Huck, Matthias Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
We investigate insertion and deletion models for hierarchical phrase-based statistical machine translation. Insertion and deletion models are designed as a means to avoid the omission of content words in the hypothese... 详细信息
来源: 评论
Improving Long Context Document-Level Machine Translation  4
Improving Long Context Document-Level Machine Translation
收藏 引用
4th Workshop on Computational Approaches to Discourse, CODI 2023
作者: Herold, Christian Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
Document-level context for neural machine translation (NMT) is crucial to improve the translation consistency and cohesion, the translation of ambiguous inputs, as well as several other linguistic phenomena. Many work... 详细信息
来源: 评论
Pivot lightly-supervised training for statistical machine translation  10
Pivot lightly-supervised training for statistical machine tr...
收藏 引用
10th Conference of the Association for Machine Translation in the Americas, AMTA 2012
作者: Huck, Matthias Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
In this paper, we investigate large-scale lightly-supervised training with a pivot language: We augment a baseline statistical machine translation (SMT) system that has been trained on human-generated parallel trainin... 详细信息
来源: 评论
Separating Fact from Fear: Tracking Flu Infections on Twitter  2
Separating Fact from Fear: Tracking Flu Infections on Twitte...
收藏 引用
2nd Workshop on Computational Linguistics for Literature, CLfL 2013 at the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: human language Technologies, NAACL-HLT 2013
作者: Lamb, Alex Paul, Michael J. Dredze, Mark Human Language Technology Center of Excellence Department of Computer Science Johns Hopkins University BaltimoreMD21218 United States
Twitter has been shown to be a fast and reliable method for disease surveillance of common illnesses like influenza. However, previous work has relied on simple content analysis, which conflates flu tweets that report...
来源: 评论
The RWTH Aachen University Filtering System for the WMT 2018 Parallel Corpus Filtering Task  3
The RWTH Aachen University Filtering System for the WMT 2018...
收藏 引用
3rd Conference on Machine Translation, WMT 2018 at the Conference on Empirical Methods in Natural language Processing, EMNLP 2018
作者: Rossenbach, Nick Rosendahl, Jan Kim, Yunsu Graça, Miguel Gokrani, Aman Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
This paper describes the submission of RWTH Aachen University for the De→En parallel corpus filtering task of the EMNLP 2018 Third Conference on Machine Translation (WMT 2018). We use several rule-based, heuristic me... 详细信息
来源: 评论
The rwth aachen german-english machine translation system for wmt 2015  10
The rwth aachen german-english machine translation system fo...
收藏 引用
10th Workshop on Statistical Machine Translation, WMT 2015 at the 2015 Conference on Empirical Methods in Natural language Processing, EMNLP 2015
作者: Peter, Jan-Thorsten Toutounchi, Farzad Wuebker, Joern Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department Rwth Aachen University AachenD-52056 Germany
This paper describes the statistical machine translation system developed at RWTH Aachen University for the German!English translation task of the EMNLP 2015 Tenth Workshop on Statistical Machine Translation (WMT 2015... 详细信息
来源: 评论
The RWTH Aachen University English-Romanian Machine Translation System for WMT 2016  1
The RWTH Aachen University English-Romanian Machine Translat...
收藏 引用
1st Conference on Machine Translation, WMT 2016, held at the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016
作者: Peter, Jan-Thorsten Alkhouli, Tamer Guta, Andreas Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
This paper describes the statistical machine translation system developed at RWTH Aachen University for the English→Romanian translation task of the ACL 2016 First Conference on Machine Translation (WMT 2016). We com... 详细信息
来源: 评论
Biasing attention-based recurrent neural networks using external alignment information  2
Biasing attention-based recurrent neural networks using exte...
收藏 引用
2nd Conference on Machine Translation, WMT 2017
作者: Alkhouli, Tamer Ney, Hermann Human Language Technology and Pattern Recognition Group Computer Science Department RWTH Aachen University AachenD-52056 Germany
This work explores extending attention-based neural models to include alignment information as input. We modify the attention component to have dependence on the current source position. The attention model is then us... 详细信息
来源: 评论