咨询与建议

限定检索结果

文献类型

  • 542 篇 会议
  • 393 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 939 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 594 篇 工学
    • 434 篇 计算机科学与技术...
    • 372 篇 软件工程
    • 134 篇 信息与通信工程
    • 66 篇 控制科学与工程
    • 54 篇 生物工程
    • 41 篇 生物医学工程(可授...
    • 38 篇 电气工程
    • 31 篇 机械工程
    • 25 篇 电子科学与技术(可...
    • 22 篇 化学工程与技术
    • 16 篇 光学工程
    • 14 篇 动力工程及工程热...
  • 368 篇 理学
    • 167 篇 物理学
    • 135 篇 数学
    • 89 篇 生物学
    • 65 篇 统计学(可授理学、...
    • 44 篇 系统科学
    • 26 篇 化学
  • 133 篇 管理学
    • 75 篇 图书情报与档案管...
    • 53 篇 管理科学与工程(可...
    • 30 篇 工商管理
  • 78 篇 医学
    • 67 篇 临床医学
    • 48 篇 基础医学(可授医学...
    • 24 篇 公共卫生与预防医...
    • 21 篇 药学(可授医学、理...
  • 53 篇 教育学
    • 38 篇 教育学
    • 26 篇 心理学(可授教育学...
  • 45 篇 法学
    • 43 篇 社会学
  • 21 篇 文学
    • 14 篇 外国语言文学
  • 17 篇 农学
  • 13 篇 经济学
    • 13 篇 应用经济学
  • 2 篇 哲学
  • 2 篇 军事学
  • 1 篇 历史学
  • 1 篇 艺术学

主题

  • 80 篇 speech recogniti...
  • 32 篇 hidden markov mo...
  • 27 篇 training
  • 24 篇 speech
  • 21 篇 semantics
  • 21 篇 machine learning
  • 21 篇 humans
  • 20 篇 computer science
  • 20 篇 machine translat...
  • 20 篇 decoding
  • 18 篇 feature extracti...
  • 16 篇 transducers
  • 15 篇 deep learning
  • 14 篇 computer aided l...
  • 14 篇 neural machine t...
  • 13 篇 natural language...
  • 13 篇 natural language...
  • 12 篇 support vector m...
  • 12 篇 computational li...
  • 11 篇 students

机构

  • 44 篇 apptek gmbh aach...
  • 36 篇 human language t...
  • 29 篇 human language t...
  • 18 篇 human language t...
  • 17 篇 institute of res...
  • 16 篇 human language t...
  • 15 篇 trustworthy huma...
  • 13 篇 department of in...
  • 12 篇 department of la...
  • 11 篇 department of co...
  • 11 篇 computer science...
  • 10 篇 human language t...
  • 9 篇 department of co...
  • 9 篇 human language t...
  • 9 篇 hkust human lang...
  • 9 篇 center for speec...
  • 9 篇 future technolog...
  • 9 篇 school of medici...
  • 8 篇 julius centre fo...
  • 8 篇 computer science...

作者

  • 139 篇 ney hermann
  • 63 篇 schlüter ralf
  • 34 篇 wu dekai
  • 33 篇 hermann ney
  • 22 篇 habernal ivan
  • 18 篇 dredze mark
  • 18 篇 hosseinzadeh meh...
  • 17 篇 ralf schlüter
  • 17 篇 pascale fung
  • 17 篇 zhou wei
  • 16 篇 rahmani amir mas...
  • 15 篇 fung pascale
  • 14 篇 gao yingbo
  • 14 篇 michel wilfried
  • 13 篇 ralf schluter
  • 12 篇 yousefpoor moham...
  • 12 篇 zeineldeen moham...
  • 12 篇 thomas fang zhen...
  • 12 篇 badriyya b.al-on...
  • 12 篇 zeyer albert

语言

  • 924 篇 英文
  • 11 篇 其他
  • 4 篇 中文
检索条件"机构=Department of Computer Science Department of Language and Human Development"
939 条 记 录,以下是161-170 订阅
排序:
Sequence-discriminative training of recurrent neural networks  40
Sequence-discriminative training of recurrent neural network...
收藏 引用
40th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2015
作者: Voigtlaender, Paul Doetsch, Patrick Wiesler, Simon Schluter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany LIMSI CNRS Spoken Language Processing Group Paris France
We investigate sequence-discriminative training of long shortterm memory recurrent neural networks using the maximum mutual information criterion. We show that although recurrent neural networks already make use of th... 详细信息
来源: 评论
Feature-rich sub-lexical language models using a maximum entropy approach for German LVCSR
Feature-rich sub-lexical language models using a maximum ent...
收藏 引用
14th Annual Conference of the International Speech Communication Association, INTERSPEECH 2013
作者: Shaik, M. Ali Basha El-Desoky Mousa, Amr Schlüter, Ralf Ney, Hermann Computer Science Department Human Language Technology and Pattern Recognition RWTH Aachen University Aachen Germany Spoken Language Processing Group LIMSI CNRS Paris France
German is a morphologically rich language having a high degree of word inflections, derivations and compounding. This leads to high out-of-vocabulary (OOV) rates and poor language model (LM) probabilities in the large... 详细信息
来源: 评论
Integrating Gaussian mixtures into deep neural networks: Softmax layer with hidden variables  40
Integrating Gaussian mixtures into deep neural networks: Sof...
收藏 引用
40th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2015
作者: Tuske, Zoltan Tahir, Muhammad Ali Schluter, Ralf Ney, Hermann Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University Aachen Germany Spoken Language Processing Group LIMSI CNRS Paris France
In the hybrid approach, neural network output directly serves as hidden Markov model (HMM) state posterior probability estimates. In contrast to this, in the tandem approach neural network output is used as input feat... 详细信息
来源: 评论
TransCell:In Silico Characterization of Genomic Landscape and Cellular Responses by Deep Transfer Learning
收藏 引用
Genomics, Proteomics & Bioinformatics 2024年 第2期22卷 157-170页
作者: Shan-Ju Yeh Shreya Paithankar Ruoqiao Chen Jing Xing Mengying Sun Ke Liu Jiayu Zhou Bin Chen Department of Pediatrics and Human Development Michigan State UniversityGrand RapidsMI 49503USA Department of Pharmacology and Toxicology Michigan State UniversityGrand RapidsMI 49503USA Department of Computer Science and Engineering Michigan State UniversityEast LansingMI 48824USA
Gene expression profiling of new or modified cell lines becomes routine today;however,obtaining comprehensive molecular characterization and cellular responses for a variety of cell lines,including those derived from ... 详细信息
来源: 评论
An Information-Theoretic Empirical Analysis of Dependency-Based Feature Types for Word Prediction Models
An Information-Theoretic Empirical Analysis of Dependency-Ba...
收藏 引用
1999 Joint SIGDAT Conference on Empirical Methods in Natural language Processing and Very Large Corpora, EMNLP 1999
作者: Wu, Dekai Zhao, Jun Sui, Zhifang Human Language Technology Center Department of Computer Science University of Science and Technology HKUST Clear Water Bay Hong Kong Computational Linguistics Institute Department of Computer Science and Technology Peking University Beijing100871 China
Over the years, many proposals have been made to incorporate assorted types of feature in language models. However, discrepancies between training sets, evaluation criteria, algorithms, and hardware environments make ... 详细信息
来源: 评论
Improving statistical machine translation using word sense disambiguation
Improving statistical machine translation using word sense d...
收藏 引用
2007 Joint Conference on Empirical Methods in Natural language Processing and Computational Natural language Learning, EMNLP-CoNLL 2007
作者: Carpuat, Marine Wu, Dekai Department of Computer Science and Engineering Human Language Technology Center HKUST University of Science and Technology Clear Water Bay Hong Kong Hong Kong
We show for the first time that incorporating the predictions of a word sense disambiguation system within a typical phrase-based statistical machine translation (SMT) model consistently improves translation quality a... 详细信息
来源: 评论
Improved combinatory categorial grammar induction with boundary words and bayesian inference
Improved combinatory categorial grammar induction with bound...
收藏 引用
24th International Conference on Computational Linguistics, COLING 2012
作者: Huang, Yun Zhang, Min Tan, Chew Lim Department of Computer Science National University of Singapore 13 Computing Drive Singapore Institute for Infocomm Research Human Language Department 1 Fusionopolis Way Singapore
Combinatory Categorial Grammar (CCG) is an expressive grammar formalism which is able to capture long-range dependencies. However, building large and wide-coverage treebanks for CCG is expensive and time-consuming. In... 详细信息
来源: 评论
MT model space: Statistical versus compositional versus example-based machine translation
MT model space: Statistical versus compositional versus exam...
收藏 引用
作者: Wu, Dekai Department of Computer Science HKUST Human Language Technology Center Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
We offer a perspective on EBMT from a statistical MT standpoint, by developing a three-dimensional MT model space based on three pairs of definitions: (1) logical versus statistical MT, (2) schema-based versus example... 详细信息
来源: 评论
Boosting for Chinese named entity recognition  5
Boosting for Chinese named entity recognition
收藏 引用
5th SIGHAN Workshop on Chinese language Processing, co-located with COLING/ACL 2006
作者: Yu, Xiaofeng Carpuat, Marine Wu, Dekai Human Language Technology Center HKUST Department of Computer Science and Engineering University of Science and Technology Clear Water Bay Hong Kong Hong Kong
We report an experiment in which a high-performance boosting based NER model originally designed for multiple European languages is instead applied to the Chinese named entity recognition task of the third SIGHAN Chin... 详细信息
来源: 评论
BESTCUT: A graph algorithm for coreference resolution
BESTCUT: A graph algorithm for coreference resolution
收藏 引用
11th Conference on Empirical Methods in Natural language Proceessing, EMNLP 2006, Held in Conjunction with COLING/ACL 2006
作者: Nicolae, Cristina Nicolae, Gabriel Human Language Technology Research Institute Department of Computer Science University of Texas at Dallas Richardson TX 75083-0688 United States
In this paper we describe a coreference resolution method that employs a classification and a clusterization phase. In a novel way, the clusterization is produced as a graph cutting algorithm, in which nodes of the gr... 详细信息
来源: 评论