咨询与建议

限定检索结果

文献类型

  • 542 篇 会议
  • 394 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 940 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 597 篇 工学
    • 437 篇 计算机科学与技术...
    • 376 篇 软件工程
    • 132 篇 信息与通信工程
    • 69 篇 控制科学与工程
    • 54 篇 生物工程
    • 43 篇 生物医学工程(可授...
    • 38 篇 电气工程
    • 31 篇 机械工程
    • 26 篇 电子科学与技术(可...
    • 22 篇 化学工程与技术
    • 16 篇 光学工程
    • 14 篇 动力工程及工程热...
  • 367 篇 理学
    • 166 篇 物理学
    • 134 篇 数学
    • 89 篇 生物学
    • 65 篇 统计学(可授理学、...
    • 44 篇 系统科学
    • 25 篇 化学
  • 133 篇 管理学
    • 76 篇 图书情报与档案管...
    • 52 篇 管理科学与工程(可...
    • 29 篇 工商管理
  • 77 篇 医学
    • 66 篇 临床医学
    • 52 篇 基础医学(可授医学...
    • 24 篇 公共卫生与预防医...
    • 21 篇 药学(可授医学、理...
  • 49 篇 教育学
    • 38 篇 教育学
    • 23 篇 心理学(可授教育学...
  • 44 篇 法学
    • 42 篇 社会学
  • 20 篇 文学
    • 14 篇 外国语言文学
    • 13 篇 中国语言文学
  • 17 篇 农学
  • 12 篇 经济学
  • 2 篇 哲学
  • 2 篇 军事学
  • 1 篇 历史学
  • 1 篇 艺术学

主题

  • 80 篇 speech recogniti...
  • 32 篇 hidden markov mo...
  • 27 篇 training
  • 24 篇 speech
  • 22 篇 semantics
  • 21 篇 humans
  • 20 篇 computer science
  • 20 篇 machine translat...
  • 20 篇 decoding
  • 20 篇 machine learning
  • 18 篇 feature extracti...
  • 16 篇 transducers
  • 15 篇 deep learning
  • 14 篇 computer aided l...
  • 14 篇 neural machine t...
  • 13 篇 natural language...
  • 13 篇 natural language...
  • 12 篇 computational li...
  • 11 篇 support vector m...
  • 11 篇 students

机构

  • 43 篇 apptek gmbh aach...
  • 36 篇 human language t...
  • 29 篇 human language t...
  • 18 篇 human language t...
  • 17 篇 institute of res...
  • 16 篇 human language t...
  • 14 篇 trustworthy huma...
  • 13 篇 department of in...
  • 12 篇 department of la...
  • 11 篇 department of co...
  • 11 篇 computer science...
  • 9 篇 department of co...
  • 9 篇 human language t...
  • 9 篇 human language t...
  • 9 篇 hkust human lang...
  • 9 篇 future technolog...
  • 9 篇 school of medici...
  • 8 篇 department of co...
  • 8 篇 health managemen...
  • 8 篇 julius centre fo...

作者

  • 138 篇 ney hermann
  • 62 篇 schlüter ralf
  • 34 篇 wu dekai
  • 33 篇 hermann ney
  • 22 篇 habernal ivan
  • 18 篇 dredze mark
  • 18 篇 hosseinzadeh meh...
  • 17 篇 ralf schlüter
  • 17 篇 pascale fung
  • 17 篇 zhou wei
  • 16 篇 rahmani amir mas...
  • 15 篇 fung pascale
  • 14 篇 gao yingbo
  • 14 篇 michel wilfried
  • 13 篇 ralf schluter
  • 12 篇 yousefpoor moham...
  • 12 篇 zeineldeen moham...
  • 12 篇 badriyya b.al-on...
  • 12 篇 zeyer albert
  • 12 篇 zens richard

语言

  • 913 篇 英文
  • 23 篇 其他
  • 4 篇 中文
检索条件"机构=Department of Computer Science Department of Language and Human Development"
940 条 记 录,以下是681-690 订阅
排序:
The RWTH Aachen Machine Translation System for WMT 2012  7
The RWTH Aachen Machine Translation System for WMT 2012
收藏 引用
7th Workshop on Statistical Machine Translation, WMT 2012, immediately following the Conference of the North-American Chapter of the Association for Computational Linguistics - human language Technologies, NAACL HLT 2012
作者: Huck, Matthias Peitz, Stephan Freitag, Markus Nuhn, Malte Ney, Hermann Computer Science Department Human Language Technology And Pattern Recognition Group Rwth Aachen University AachenD-52056 Germany
This paper describes the statistical machine translation (SMT) systems developed at RWTH Aachen University for the translation task of the NAACL 2012 Seventh Workshop on Statistical Machine Translation (WMT 2012). We ... 详细信息
来源: 评论
Improved combinatory categorial grammar induction with boundary words and bayesian inference
Improved combinatory categorial grammar induction with bound...
收藏 引用
24th International Conference on Computational Linguistics, COLING 2012
作者: Huang, Yun Zhang, Min Tan, Chew Lim Department of Computer Science National University of Singapore 13 Computing Drive Singapore Institute for Infocomm Research Human Language Department 1 Fusionopolis Way Singapore
Combinatory Categorial Grammar (CCG) is an expressive grammar formalism which is able to capture long-range dependencies. However, building large and wide-coverage treebanks for CCG is expensive and time-consuming. In... 详细信息
来源: 评论
Entity clustering across languages
Entity clustering across languages
收藏 引用
2012 Conference of the North American Chapter of the Association for Computational Linguistics: human language Technologies, NAACL HLT 2012
作者: Green, Spence Andrews, Nicholas Gormley, Matthew R. Dredze, Mark Manning, Christopher D. Computer Science Department Stanford University United States Human Language Technology Center of Excellence Johns Hopkins University United States
Standard entity clustering systems commonly rely on mention (string) matching, syntactic features, and linguistic resources like English WordNet. When co-referent text mentions appear in different languages, these tec... 详细信息
来源: 评论
Improved Constituent Context model with features
Improved Constituent Context model with features
收藏 引用
26th Pacific Asia Conference on language, Information and Computation, PACLIC 2012
作者: Huang, Yun Zhang, Min Tan, Chew Lim Human Language Department Institute for Infocomm Research 1 Fusionopolis Way Singapore Singapore Department of Computer Science National University of Singapore 13 Computing Drive Singapore Singapore
The Constituent-Context Model (CCM) achieves promising results for unsupervised grammar induction. However, its performance drops for longer sentences. In this paper, we describe a general feature-based model for CCM,... 详细信息
来源: 评论
Combining confidence score and Mal-rule filters for automatic creation of Bangla error corpus: Grammar checker perspective
Combining confidence score and Mal-rule filters for automati...
收藏 引用
13th Annual Conference on Intelligent Text Processing and Computational Linguistics, CICLing 2012
作者: Kundu, Bibekananda Chakraborti, Sutanu Choudhury, Sanjay Kumar Language Technology Centre for Development of Advance Computing Kolkata 700091 India Department of Computer Science and Engineering Indian Institution of Technology Chennai 600036 India
This paper describes a novel approach for automatic creation of Bangla error corpus for training and evaluation of grammar checker systems. The procedure begins with automatic creation of large number of erroneous sen... 详细信息
来源: 评论
Cross-Lingual language modeling with syntactic reordering for low-resource speech recognition
Cross-Lingual language modeling with syntactic reordering fo...
收藏 引用
2012 Joint Conference on Empirical Methods in Natural language Processing and Computational Natural language Learning, EMNLP-CoNLL 2012
作者: Xu, Ping Fung, Pascale Human Language Technology Center Department of Electronic and Computer Engineering Hong Kong University of Science and Technology Clear Water Bay Hong Kong Hong Kong
This paper proposes cross-lingual language modeling for transcribing source resource-poor languages and translating them into target resource-rich languages if necessary. Our focus is to improve the speech recognition... 详细信息
来源: 评论
EMPIRICAL MEASUREMENTS ON A SESOTHO TONE LABELING ALGORITHM  3
EMPIRICAL MEASUREMENTS ON A SESOTHO TONE LABELING ALGORITHM
收藏 引用
3rd Workshop on Spoken language Technologies for Under-Resourced languages, SLTU 2012
作者: Raborife, Mpho Zerbian, Sabine Ewert, Sigrid Meraka Institute Human Language Technology Group South Africa Potsdam University Department of Linguistics Germany University of the Witwatersrand School of Computer Science South Africa
This article discusses the empirical assessments employed on two versions of a Sesotho tone labeling algorithm. This algorithm uses linguistically-defined Sesotho tonal rules to predict the tone labels on the syllable... 详细信息
来源: 评论
Semantic cohesion model for phrase-based SMT
Semantic cohesion model for phrase-based SMT
收藏 引用
24th International Conference on Computational Linguistics, COLING 2012
作者: Feng, Minwei Sun, Weiwei Ney, Hermann Computer Science Department Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany MOE Key Laboratory of Computational Linguistics Institute of Computer Science and Technology Peking University Beijing China
In this paper, we propose a novel semantic cohesion model. Our model utilizes the predicateargument structures as soft constraints and plays the role as a reordering model in the phrasebased statistical machine transl... 详细信息
来源: 评论
RESOURCE development AND EXPERIMENTS IN AUTOMATIC SOUTH AFRICAN BROADCAST NEWS TRANSCRIPTION  3
RESOURCE DEVELOPMENT AND EXPERIMENTS IN AUTOMATIC SOUTH AFRI...
收藏 引用
3rd Workshop on Spoken language Technologies for Under-Resourced languages, SLTU 2012
作者: Kamper, Herman de Wet, Febe Hain, Thomas Niesler, Thomas Department of Electrical and Electronic Engineering Stellenbosch University South Africa Human Language Technology Competency Area CSIR Meraka Institute Pretoria South Africa Department of Computer Science University of Sheffield United Kingdom
We present a description of the development and evaluation of a first South African broadcast news transcription system. We describe a number of speech resources which have been collected in the resource-scarce South ... 详细信息
来源: 评论
Name phylogeny: A generative model of string variation
Name phylogeny: A generative model of string variation
收藏 引用
2012 Joint Conference on Empirical Methods in Natural language Processing and Computational Natural language Learning, EMNLP-CoNLL 2012
作者: Andrews, Nicholas Eisner, Jason Dredze, Mark Department of Computer Science Human Language Technology Center of Excellence Johns Hopkins University 3400 N. Charles St. Baltimore MD 21218 United States
Many linguistic and textual processes involve transduction of strings. We show how to learn a stochastic transducer from an unorganized collection of strings (rather than string pairs). The role of the transducer is t... 详细信息
来源: 评论