technology has deeply embedded itself in our daily lives, making it easier to carry out tasks. However, the use of technology can be complicated for some like elderly people, cognitively and visually impaired individu...
详细信息
Generative Artificial Intelligence (GAI) is fundamentally changing the ways of working and blurring the boundaries between human and machine-generated contents. While there is an increasing interest in the adoption of...
详细信息
Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire *** recent advancements in digital pathology,Eosin and hematoxylin images provide enhanced clarit...
详细信息
Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire *** recent advancements in digital pathology,Eosin and hematoxylin images provide enhanced clarity in examiningmicroscopic features of breast tissues based on their staining *** cancer detection facilitates the quickening of the therapeutic process,thereby increasing survival *** analysis made by medical professionals,especially pathologists,is time-consuming and challenging,and there arises a need for automated breast cancer detection *** upcoming artificial intelligence platforms,especially deep learning models,play an important role in image diagnosis and ***,the histopathology biopsy images are taken from standard data ***,the gathered images are given as input to the Multi-Scale Dilated Vision Transformer,where the essential features are ***,the features are subjected to the Bidirectional Long Short-Term Memory(Bi-LSTM)for classifying the breast cancer *** efficacy of the model is evaluated using divergent *** compared with other methods,the proposed work reveals that it offers impressive results for detection.
The concept of cloud computing has hastily grown in reputation, allowing businesses to shop and get access to facts from remote servers. Higher educational establishments have additionally adopted cloud services for s...
详细信息
An AI wellness coach is a software program that guides users through physical health routines by leveraging MediaPipe, OpenCV, and Python features. The program uses OpenCV computer vision techniques to monitor user pr...
详细信息
Graphconvolutional networks(GCNs)have become prevalent in recommender system(RS)due to their superiority in modeling collaborative *** improving the overall accuracy,GCNs unfortunately amplify popularity bias-tail ite...
详细信息
Graphconvolutional networks(GCNs)have become prevalent in recommender system(RS)due to their superiority in modeling collaborative *** improving the overall accuracy,GCNs unfortunately amplify popularity bias-tail items are less likely to be *** effect prevents the GCN-based RS from making precise and fair recommendations,decreasing the effectiveness of recommender systems in the long *** this paper,we investigate how graph convolutions amplify the popularity bias in *** theoretical analyses,we identify two fundamental factors:(1)with graph convolution(i.e.,neighborhood aggregation),popular items exert larger influence than tail items on neighbor users,making the users move towards popular items in the representation space;(2)after multiple times of graph convolution,popular items would affect more high-order neighbors and become more *** two points make popular items get closer to almost users and thus being recommended more *** rectify this,we propose to estimate the amplified effect of popular nodes on each node's representation,and intervene the effect after each graph ***,we adopt clustering to discover highly-influential nodes and estimate the amplification effect of each node,then remove the effect from the node embeddings at each graph convolution *** method is simple and generic-it can be used in the inference stage to correct existing models rather than training a new model from scratch,and can be applied to various GCN *** demonstrate our method on two representative GCN backbones LightGCN and UltraGCN,verifying its ability in improving the recommendations of tail items without sacrificing the performance of popular *** are open-sourced^(1)).
Management of vehicular parking in the crowded environment is the indispensable requirement for the smart city scenario. The advent and potential development of information Communication Technologies (ICT) and Interne...
详细信息
Accurate diagnosis and treatment planning for medical conditions rely heavily on the results of medical image segmentation. Medical images are available in many modalities like CT scans, MRI, histopathological, and ul...
详细信息
Accurate diagnosis and treatment planning for medical conditions rely heavily on the results of medical image segmentation. Medical images are available in many modalities like CT scans, MRI, histopathological, and ultrasound images. Among all, the real-time analysis of the ultrasound is the most complex as the internal organ’s visualization requires experience from the radiologist. Diagnosing the medical conditions and unavailability of experienced radiologists during an emergency requires automated segmentation which heavily depends on computer-aided diagnostic systems. The new generation CAD systems are found to incorporate advanced deep learning algorithms to produce accurate segmentation results. While most of the segmentation models relate to the encoder-decoder model as the base architecture and thus evolve a variety of modifications in its pipeline architecture. This paper presents the analytical study of the various Encoder- Decoder based models like UNet, Residual UNet (Res-U-Net), Dense UNet (DenseUNet), Attention UNet, UNet + +, Double UNet, and U2Net (U-Squared-Net) on ultrasound image segmentation. Further, the paper presents the various trade-offs, application areas, open challenges, and performance analysis of these models on benchmark datasets, namely the HC18 Challenge dataset, CUM dataset, and B-mode Ultrasound Nerve Segmentation dataset. The performance analysis of these models is presented using the six state-of-the-art metrics like Dice coefficient, Jaccard index, sensitivity, specificity, Mean Absolute distance, and Housdorff Distance. Based on the above parameters U2-Net (U-Squared-Net) outperformed all other neural network models for all three datasets. In terms of all four criteria (Dice Coefficient: 0.92, 0.89, 0.9, Jaccard Index: 0.81, 0.79, 0.81, Sensitivity: 0.86, 0.84, 0.86, Specificity: 0.97, 0.95, 0.96), the U2-Net (U-Squared-Net) model performed the best. Over the HC18 Challenge dataset, the CUM dataset, and the B-Mode Ultrasound ne
In the contemporary landscape of advanced mobile technology, social media platforms have emerged as prominent arenas for expression, fostering vast volumes of communication ripe for research and analysis. Social netwo...
详细信息
Nowadays,commercial transactions and customer reviews are part of human life and various business *** technologies create a great impact on online user reviews and activities,affecting the business *** reviews and rat...
详细信息
Nowadays,commercial transactions and customer reviews are part of human life and various business *** technologies create a great impact on online user reviews and activities,affecting the business *** reviews and ratings are more helpful to the new customer to purchase the product,but the fake reviews completely affect the *** traditional systems consume maximum time and create complexity while analyzing a large volume of customer ***,in this work optimized recommendation system is developed for analyzing customer reviews with minimum ***,Amazon Product Kaggle dataset information is utilized for investigating the customer *** collected information is analyzed and processed by batch normalized capsule networks(NCN).The network explores the user reviews according to product details,time,price purchasing factors,etc.,ensuring product quality and *** effective recommendation system is developed using a butterfly optimized matrix factorizationfiltering *** the system’s efficiency is evaluated using the Rand Index,Dunn index,accuracy,and error rate.
暂无评论