Numerous techniques are available to improve soils characterized by inadequate shear strength, bearing capacity, and other swelling parameters, which can jeopardize the stability of several infrastructure projects. Th...
详细信息
The increasing emergence of IoT in healthcare, industrial automation, manufacturing, infrastructure, business and the home undoubtedly provides more conveniences in different aspects of human life. Any IoT security an...
详细信息
The Internet Of Things (IoT) is a network of heterogeneous nodes that exchange data and critical information amongst themselves with minimum human intervention. The utility of this technology is large, thus it is used...
详细信息
Automated analysis of breast cancer (BC) histopathology images is a challenging task due to the high resolution, multiple magnifications, color variations, the presence of image artifacts, and morphological variabilit...
详细信息
In the times of advanced generative artificial intelligence, distinguishing truth from fallacy and deception has become a critical societal challenge. This research attempts to analyze the capabilities of large langua...
详细信息
Detecting behavioral changes associated with suicidal ideation on social media is essential yet complex. While machine learning and deep learning hold promise in this regard, current studies often lack generalizabilit...
详细信息
This study employs transfer learning using a fine-tuned pretrained EfficientNetB0 convolutional neural network (CNN) model to accurately detect the various stages of Diabetic Retinopathy. The training process involved...
详细信息
Automatic Human Action Recognition (HAR) using RGB-D (Red, Green, Blue, and Depth) videos captivated a lot of attention in the pattern classification field due to low-cost depth cameras. Feature extraction in action r...
详细信息
Payment channels support off-chain transactions by enhancing transaction speed and reducing fees in the main blockchain. However, the costs and complexity of the network increase as we increase the size of the network...
详细信息
Drug-target interactions(DTIs) prediction plays an important role in the process of drug *** computational methods treat it as a binary prediction problem, determining whether there are connections between drugs and t...
详细信息
Drug-target interactions(DTIs) prediction plays an important role in the process of drug *** computational methods treat it as a binary prediction problem, determining whether there are connections between drugs and targets while ignoring relational types information. Considering the positive or negative effects of DTIs will facilitate the study on comprehensive mechanisms of multiple drugs on a common target, in this work, we model DTIs on signed heterogeneous networks, through categorizing interaction patterns of DTIs and additionally extracting interactions within drug pairs and target protein pairs. We propose signed heterogeneous graph neural networks(SHGNNs), further put forward an end-to-end framework for signed DTIs prediction, called SHGNN-DTI,which not only adapts to signed bipartite networks, but also could naturally incorporate auxiliary information from drug-drug interactions(DDIs) and protein-protein interactions(PPIs). For the framework, we solve the message passing and aggregation problem on signed DTI networks, and consider different training modes on the whole networks consisting of DTIs, DDIs and PPIs. Experiments are conducted on two datasets extracted from Drug Bank and related databases, under different settings of initial inputs, embedding dimensions and training modes. The prediction results show excellent performance in terms of metric indicators, and the feasibility is further verified by the case study with two drugs on breast cancer.
暂无评论